MCP Template
A production-ready Python template for building MCP servers with enterprise features including registry integration, configuration management, structured logging, and extensible patterns for tools, resources, and prompts.
README
MCP Template
Production-ready MCP (Model Context Protocol) server template in Python with registry integration, comprehensive configuration management, and extensibility patterns.
Features
- Production-Ready: Enterprise-grade error handling, structured logging, and graceful shutdown
- Registry Integration: Automatic server registration, heartbeats, and deregistration
- Configuration Management: YAML-based config with environment variable overrides and Pydantic validation
- Extensible Architecture: Easy-to-extend base classes for tools, resources, and prompts
- Type Safety: Full type hints throughout the codebase
- Developer Experience: Comprehensive CLI, extensive documentation, and example implementations
- Testing: Unit and integration test examples with pytest
Quick Start
Installation
# Clone or copy this template
cd mcp-template
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -e ".[dev]"
# Or using requirements.txt
pip install -r requirements-dev.txt
Initialize Configuration
# Initialize default configuration
mcp-template init
# This creates:
# - config/config.yaml (server configuration)
# - .env (environment variables)
Run the Server
# Run with default configuration
mcp-template run
# Run with custom config
mcp-template run --config path/to/config.yaml
# Run in debug mode
mcp-template run --debug
# Validate configuration
mcp-template validate
# Check health
mcp-template health
Project Structure
mcp-template/
├── src/mcp_template/
│ ├── core/ # Core server components
│ │ ├── server.py # Base MCP server implementation
│ │ ├── settings.py # Pydantic settings models
│ │ ├── config_loader.py # Configuration loader
│ │ └── logger.py # Structured logging setup
│ ├── registry/ # Registry integration
│ │ ├── base.py # Registry client interface
│ │ ├── http_client.py # HTTP registry implementation
│ │ └── manager.py # Registry lifecycle manager
│ ├── tools/ # MCP tools
│ │ ├── calculator.py # Example calculator tool
│ │ └── search.py # Example search tool
│ ├── resources/ # MCP resources
│ │ ├── config.py # Configuration resource
│ │ └── status.py # Status resource
│ ├── prompts/ # MCP prompts
│ │ └── example.py # Example prompt
│ ├── app.py # Main application
│ └── cli.py # Command-line interface
├── config/
│ └── config.yaml # Server configuration
├── tests/
│ ├── unit/ # Unit tests
│ └── integration/ # Integration tests
├── pyproject.toml # Project metadata and dependencies
├── requirements.txt # Production dependencies
├── requirements-dev.txt # Development dependencies
├── Makefile # Development commands
└── README.md # This file
Configuration
Configuration File (config/config.yaml)
The main configuration file supports:
- Server settings: Name, version, description, debug mode
- Logging: Level, format (JSON/text), file output
- Registry: URL, authentication, heartbeat settings, metadata
- Tools/Resources/Prompts: Enable/disable specific components
Example:
server:
name: "my-mcp-server"
version: "0.1.0"
description: "My custom MCP server"
logging:
level: "INFO"
format: "json"
registry:
enabled: true
url: "https://registry.example.com/api/v1"
auth:
type: "api_key"
api_key: "${REGISTRY_API_KEY}"
heartbeat:
enabled: true
interval: 60
tools:
enabled:
- "example_calculator"
- "example_search"
Environment Variables
Override configuration using environment variables with double underscore as separator:
# Override server name
export SERVER__NAME="production-server"
# Override registry URL
export REGISTRY__URL="https://prod-registry.example.com"
# Set API key
export REGISTRY__AUTH__API_KEY="your-api-key"
# Override logging level
export LOGGING__LEVEL="DEBUG"
Environment Variables File (.env)
Create a .env file for local development:
# Registry
REGISTRY_API_KEY=your-api-key-here
# Server overrides
SERVER__DEBUG=false
# Logging
LOGGING__LEVEL=INFO
Adding Custom Components
Adding a New Tool
- Create a new file in
src/mcp_template/tools/:
# src/mcp_template/tools/my_tool.py
import mcp.types as types
async def my_tool_handler(arguments: dict) -> str:
"""Handle the tool call."""
# Your implementation here
return "Result"
MY_TOOL_SCHEMA = types.Tool(
name="my_tool",
description="Description of what the tool does",
inputSchema={
"type": "object",
"properties": {
"param1": {
"type": "string",
"description": "Parameter description"
}
},
"required": ["param1"]
}
)
- Register it in
src/mcp_template/app.py:
from .tools.my_tool import my_tool_handler, MY_TOOL_SCHEMA
# In MCPTemplateApp._register_components():
self.server.register_tool(
"my_tool",
my_tool_handler,
MY_TOOL_SCHEMA,
)
- Enable it in
config/config.yaml:
tools:
enabled:
- "my_tool"
Adding a New Resource
Similar pattern - create handler and schema, register in app.py, enable in config.
# src/mcp_template/resources/my_resource.py
import mcp.types as types
async def my_resource_handler(uri: str) -> str:
"""Handle resource read."""
return "Resource data"
MY_RESOURCE_SCHEMA = types.Resource(
uri="myresource://example",
name="My Resource",
description="Resource description",
mimeType="application/json"
)
Adding a New Prompt
# src/mcp_template/prompts/my_prompt.py
import mcp.types as types
async def my_prompt_handler(arguments: dict) -> types.GetPromptResult:
"""Handle prompt request."""
return types.GetPromptResult(
description="Prompt description",
messages=[
types.PromptMessage(
role="user",
content=types.TextContent(
type="text",
text="Prompt text"
)
)
]
)
MY_PROMPT_SCHEMA = types.Prompt(
name="my_prompt",
description="Prompt description",
arguments=[
types.PromptArgument(
name="arg1",
description="Argument description",
required=True
)
]
)
Registry Integration
The template includes a pluggable registry system for server discovery and management.
How It Works
- Registration: On startup, server registers with the registry
- Heartbeat: Periodic heartbeats maintain the registration
- Deregistration: Graceful shutdown deregisters the server
Custom Registry Backend
Implement the RegistryClient interface for custom backends:
from mcp_template.registry.base import RegistryClient
class MyRegistryClient(RegistryClient):
async def register(self, server_info: dict) -> dict:
# Your implementation
pass
async def deregister(self, server_id: str) -> bool:
# Your implementation
pass
# Implement other methods...
Then use it in your application:
from mcp_template.registry.manager import RegistryManager
registry_manager = RegistryManager(settings, client=MyRegistryClient())
Development
Setup Development Environment
# Install with development dependencies
pip install -e ".[dev]"
# Or using make
make install
Running Tests
# Run all tests
pytest
# Run with coverage
pytest --cov
# Run only unit tests
pytest tests/unit
# Run only integration tests
pytest tests/integration -m integration
# Using make
make test
Code Quality
# Format code
make format
# Lint code
make lint
# Type check
make typecheck
# Run all checks
make check
Pre-commit Hooks
# Install pre-commit hooks
pre-commit install
# Run manually
pre-commit run --all-files
Deployment
Docker
Create a Dockerfile:
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY src/ src/
COPY config/ config/
RUN pip install -e .
CMD ["mcp-template", "run"]
Build and run:
docker build -t mcp-template .
docker run -e REGISTRY_API_KEY=your-key mcp-template
Environment-Specific Configuration
Create different config files for each environment:
config/
├── config.yaml # Default
├── config.dev.yaml # Development
├── config.staging.yaml # Staging
└── config.prod.yaml # Production
Run with specific config:
mcp-template run --config config/config.prod.yaml
Monitoring and Observability
Structured Logging
All logs are structured (JSON format by default) for easy parsing:
{
"timestamp": "2024-01-01T12:00:00.000Z",
"level": "info",
"event": "Server started",
"server": "my-server",
"version": "0.1.0"
}
Health Checks
# CLI health check
mcp-template health
# Programmatic health check
from mcp_template.app import create_app
app = create_app()
health = await app.server.health_check()
Troubleshooting
Common Issues
Configuration file not found
# Initialize configuration
mcp-template init
# Or specify path
mcp-template run --config path/to/config.yaml
Registry connection failed
# Check registry health
mcp-template health
# Disable registry temporarily
# In config.yaml:
registry:
enabled: false
Import errors
# Reinstall in editable mode
pip install -e .
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Run code quality checks:
make check - Submit a pull request
License
MIT License - see LICENSE file for details
Resources
Support
For issues, questions, or contributions, please open an issue on GitHub.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.