MCP Template

MCP Template

A production-ready Python template for building MCP servers with enterprise features including registry integration, configuration management, structured logging, and extensible patterns for tools, resources, and prompts.

Category
Visit Server

README

MCP Template

Production-ready MCP (Model Context Protocol) server template in Python with registry integration, comprehensive configuration management, and extensibility patterns.

Features

  • Production-Ready: Enterprise-grade error handling, structured logging, and graceful shutdown
  • Registry Integration: Automatic server registration, heartbeats, and deregistration
  • Configuration Management: YAML-based config with environment variable overrides and Pydantic validation
  • Extensible Architecture: Easy-to-extend base classes for tools, resources, and prompts
  • Type Safety: Full type hints throughout the codebase
  • Developer Experience: Comprehensive CLI, extensive documentation, and example implementations
  • Testing: Unit and integration test examples with pytest

Quick Start

Installation

# Clone or copy this template
cd mcp-template

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -e ".[dev]"

# Or using requirements.txt
pip install -r requirements-dev.txt

Initialize Configuration

# Initialize default configuration
mcp-template init

# This creates:
# - config/config.yaml (server configuration)
# - .env (environment variables)

Run the Server

# Run with default configuration
mcp-template run

# Run with custom config
mcp-template run --config path/to/config.yaml

# Run in debug mode
mcp-template run --debug

# Validate configuration
mcp-template validate

# Check health
mcp-template health

Project Structure

mcp-template/
├── src/mcp_template/
│   ├── core/                  # Core server components
│   │   ├── server.py          # Base MCP server implementation
│   │   ├── settings.py        # Pydantic settings models
│   │   ├── config_loader.py   # Configuration loader
│   │   └── logger.py          # Structured logging setup
│   ├── registry/              # Registry integration
│   │   ├── base.py            # Registry client interface
│   │   ├── http_client.py     # HTTP registry implementation
│   │   └── manager.py         # Registry lifecycle manager
│   ├── tools/                 # MCP tools
│   │   ├── calculator.py      # Example calculator tool
│   │   └── search.py          # Example search tool
│   ├── resources/             # MCP resources
│   │   ├── config.py          # Configuration resource
│   │   └── status.py          # Status resource
│   ├── prompts/               # MCP prompts
│   │   └── example.py         # Example prompt
│   ├── app.py                 # Main application
│   └── cli.py                 # Command-line interface
├── config/
│   └── config.yaml            # Server configuration
├── tests/
│   ├── unit/                  # Unit tests
│   └── integration/           # Integration tests
├── pyproject.toml             # Project metadata and dependencies
├── requirements.txt           # Production dependencies
├── requirements-dev.txt       # Development dependencies
├── Makefile                   # Development commands
└── README.md                  # This file

Configuration

Configuration File (config/config.yaml)

The main configuration file supports:

  • Server settings: Name, version, description, debug mode
  • Logging: Level, format (JSON/text), file output
  • Registry: URL, authentication, heartbeat settings, metadata
  • Tools/Resources/Prompts: Enable/disable specific components

Example:

server:
  name: "my-mcp-server"
  version: "0.1.0"
  description: "My custom MCP server"

logging:
  level: "INFO"
  format: "json"

registry:
  enabled: true
  url: "https://registry.example.com/api/v1"
  auth:
    type: "api_key"
    api_key: "${REGISTRY_API_KEY}"
  heartbeat:
    enabled: true
    interval: 60

tools:
  enabled:
    - "example_calculator"
    - "example_search"

Environment Variables

Override configuration using environment variables with double underscore as separator:

# Override server name
export SERVER__NAME="production-server"

# Override registry URL
export REGISTRY__URL="https://prod-registry.example.com"

# Set API key
export REGISTRY__AUTH__API_KEY="your-api-key"

# Override logging level
export LOGGING__LEVEL="DEBUG"

Environment Variables File (.env)

Create a .env file for local development:

# Registry
REGISTRY_API_KEY=your-api-key-here

# Server overrides
SERVER__DEBUG=false

# Logging
LOGGING__LEVEL=INFO

Adding Custom Components

Adding a New Tool

  1. Create a new file in src/mcp_template/tools/:
# src/mcp_template/tools/my_tool.py
import mcp.types as types

async def my_tool_handler(arguments: dict) -> str:
    """Handle the tool call."""
    # Your implementation here
    return "Result"

MY_TOOL_SCHEMA = types.Tool(
    name="my_tool",
    description="Description of what the tool does",
    inputSchema={
        "type": "object",
        "properties": {
            "param1": {
                "type": "string",
                "description": "Parameter description"
            }
        },
        "required": ["param1"]
    }
)
  1. Register it in src/mcp_template/app.py:
from .tools.my_tool import my_tool_handler, MY_TOOL_SCHEMA

# In MCPTemplateApp._register_components():
self.server.register_tool(
    "my_tool",
    my_tool_handler,
    MY_TOOL_SCHEMA,
)
  1. Enable it in config/config.yaml:
tools:
  enabled:
    - "my_tool"

Adding a New Resource

Similar pattern - create handler and schema, register in app.py, enable in config.

# src/mcp_template/resources/my_resource.py
import mcp.types as types

async def my_resource_handler(uri: str) -> str:
    """Handle resource read."""
    return "Resource data"

MY_RESOURCE_SCHEMA = types.Resource(
    uri="myresource://example",
    name="My Resource",
    description="Resource description",
    mimeType="application/json"
)

Adding a New Prompt

# src/mcp_template/prompts/my_prompt.py
import mcp.types as types

async def my_prompt_handler(arguments: dict) -> types.GetPromptResult:
    """Handle prompt request."""
    return types.GetPromptResult(
        description="Prompt description",
        messages=[
            types.PromptMessage(
                role="user",
                content=types.TextContent(
                    type="text",
                    text="Prompt text"
                )
            )
        ]
    )

MY_PROMPT_SCHEMA = types.Prompt(
    name="my_prompt",
    description="Prompt description",
    arguments=[
        types.PromptArgument(
            name="arg1",
            description="Argument description",
            required=True
        )
    ]
)

Registry Integration

The template includes a pluggable registry system for server discovery and management.

How It Works

  1. Registration: On startup, server registers with the registry
  2. Heartbeat: Periodic heartbeats maintain the registration
  3. Deregistration: Graceful shutdown deregisters the server

Custom Registry Backend

Implement the RegistryClient interface for custom backends:

from mcp_template.registry.base import RegistryClient

class MyRegistryClient(RegistryClient):
    async def register(self, server_info: dict) -> dict:
        # Your implementation
        pass

    async def deregister(self, server_id: str) -> bool:
        # Your implementation
        pass

    # Implement other methods...

Then use it in your application:

from mcp_template.registry.manager import RegistryManager

registry_manager = RegistryManager(settings, client=MyRegistryClient())

Development

Setup Development Environment

# Install with development dependencies
pip install -e ".[dev]"

# Or using make
make install

Running Tests

# Run all tests
pytest

# Run with coverage
pytest --cov

# Run only unit tests
pytest tests/unit

# Run only integration tests
pytest tests/integration -m integration

# Using make
make test

Code Quality

# Format code
make format

# Lint code
make lint

# Type check
make typecheck

# Run all checks
make check

Pre-commit Hooks

# Install pre-commit hooks
pre-commit install

# Run manually
pre-commit run --all-files

Deployment

Docker

Create a Dockerfile:

FROM python:3.11-slim

WORKDIR /app

COPY requirements.txt .
RUN pip install -r requirements.txt

COPY src/ src/
COPY config/ config/

RUN pip install -e .

CMD ["mcp-template", "run"]

Build and run:

docker build -t mcp-template .
docker run -e REGISTRY_API_KEY=your-key mcp-template

Environment-Specific Configuration

Create different config files for each environment:

config/
├── config.yaml          # Default
├── config.dev.yaml      # Development
├── config.staging.yaml  # Staging
└── config.prod.yaml     # Production

Run with specific config:

mcp-template run --config config/config.prod.yaml

Monitoring and Observability

Structured Logging

All logs are structured (JSON format by default) for easy parsing:

{
  "timestamp": "2024-01-01T12:00:00.000Z",
  "level": "info",
  "event": "Server started",
  "server": "my-server",
  "version": "0.1.0"
}

Health Checks

# CLI health check
mcp-template health

# Programmatic health check
from mcp_template.app import create_app

app = create_app()
health = await app.server.health_check()

Troubleshooting

Common Issues

Configuration file not found

# Initialize configuration
mcp-template init

# Or specify path
mcp-template run --config path/to/config.yaml

Registry connection failed

# Check registry health
mcp-template health

# Disable registry temporarily
# In config.yaml:
registry:
  enabled: false

Import errors

# Reinstall in editable mode
pip install -e .

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Run code quality checks: make check
  6. Submit a pull request

License

MIT License - see LICENSE file for details

Resources

Support

For issues, questions, or contributions, please open an issue on GitHub.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured