MCP Talk
A lightweight messaging system that enables real-time communication between different AI agents through a shared, file-based message queue. It provides tools for sending, checking, and broadcasting messages to facilitate coordination across isolated project namespaces.
README
MCP Talk
Inter-agent messaging via Model Context Protocol (MCP).
A lightweight messaging system that enables AI agents (Claude, Codex, Gemini, etc.) to communicate with each other in real-time through a shared message queue.
Features
- Simple tools:
send,check,ack,broadcast,list,clean,reply - File-based persistence: Messages stored as JSON files for easy debugging
- Namespace isolation: Separate message queues per project
- Cross-agent: Works with any MCP-compatible AI assistant
- Zero dependencies: Just Python 3.10+ and the MCP SDK
Installation
# From PyPI (recommended)
pipx install mcp-talk
# Or with pip
pip install mcp-talk
# From source
git clone https://github.com/devinvenable/mcp-talk.git
cd mcp-talk
pipx install .
Configuration
Add to your MCP client configuration:
Claude Desktop / Claude Code
{
"mcpServers": {
"mcp-talk": {
"command": "mcp-talk"
}
}
}
Using uvx (no install required)
{
"mcpServers": {
"mcp-talk": {
"command": "uvx",
"args": ["mcp-talk"]
}
}
}
Codex CLI (~/.codex/config.toml)
[mcp_servers.mcp-talk]
command = "mcp-talk"
Gemini CLI (~/.gemini/settings.json)
{
"mcpServers": {
"mcp-talk": {
"command": "mcp-talk"
}
}
}
Tools
send - Send a direct message
send(to="codex", message="Please review PR #123", from_agent="claude")
check / chk - Check messages
check(agent="claude")
chk(agent="claude", include_body=true, auto_ack=true)
Returns up to 5 messages by default. Use include_body=true for full message text, auto_ack=true to delete after reading.
broadcast - Send to all agents
broadcast(message="Standup in 5 minutes", from_agent="pm")
ack - Acknowledge/delete a message
ack(id="20251126_143022_abc12345")
reply - Reply to a message
reply(id="20251126_143022_abc12345", message="Done!", from_agent="gemini")
Automatically sends response to original sender and acknowledges the original message.
list - List all messages (PM view)
list(limit=10, include_body=true)
clean - Remove old messages
clean(hours=24)
Namespaces
Isolate messages between projects using the namespace parameter:
# Game project
send(to="gemini", message="Review level 3", namespace="game")
check(agent="gemini", namespace="game")
# Work project
send(to="gemini", message="Review PR #123", namespace="work")
check(agent="gemini", namespace="work")
Messages are stored in separate directories:
~/.mcp_talk/q/ # default (no namespace)
~/.mcp_talk/q/game/ # namespace="game"
~/.mcp_talk/q/work/ # namespace="work"
Message Format
Messages are stored as JSON files in ~/.mcp_talk/q/:
{
"id": "20251126_143022_abc12345",
"from": "claude",
"to": "codex",
"type": "direct",
"created": "2025-11-26T14:30:22+00:00",
"message": "Please review PR #123",
"namespace": "work"
}
Environment Variables
| Variable | Default | Description |
|---|---|---|
MCP_TALK_QUEUE |
~/.mcp_talk/q/ |
Message queue directory |
MCP_TALK_AUTO_CLEAN_HOURS |
24 |
Auto-delete messages older than N hours (0 to disable) |
MCP_TALK_MAX_MESSAGE_CHARS |
2000 |
Maximum message length |
Multi-Agent Setup Tips
Teaching agents to check messages
The chk shortcut is designed to be a simple keyword you can add to agent instructions. Add to your agent's system prompt or memory:
Gemini (~/.gemini/instructions.md):
When I read new messages, I should investigate the topic, verify assertions, and contribute my own expertise to the team.
Claude (CLAUDE.md in project):
When starting work, check for messages with: chk(agent="claude")
Codex (~/.codex/instructions.md):
Before starting tasks, check the message queue for any team communications.
Recommended MCP config with env overrides
Customize behavior per-agent with environment variables:
# ~/.codex/config.toml
[mcp_servers.mcp-talk]
command = "mcp-talk"
env = { MCP_TALK_AUTO_CLEAN_HOURS = "12", MCP_TALK_MAX_MESSAGE_CHARS = "1200" }
// ~/.gemini/settings.json
{
"mcpServers": {
"mcp-talk": {
"command": "mcp-talk",
"env": {
"MCP_TALK_AUTO_CLEAN_HOURS": "12",
"MCP_TALK_MAX_MESSAGE_CHARS": "1200"
}
}
}
}
Example Workflow
-
Claude sends a task to Gemini:
send(to="gemini", message="Please review the authentication module", from_agent="claude") -
Gemini checks for messages:
chk(agent="gemini") -
Gemini replies when done:
reply(id="20251126_143022_abc12345", message="Review complete, LGTM!", from_agent="gemini") -
Claude receives the reply:
chk(agent="claude")
Development
# Clone and install in development mode
git clone https://github.com/devinvenable/mcp-talk.git
cd mcp-talk
pip install -e .
# Reinstall after changes (if using pipx)
pipx install --force .
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.