MCP Tailwind Gemini Server

MCP Tailwind Gemini Server

Advanced Model Context Protocol server that integrates Gemini AI with Tailwind CSS, providing intelligent component generation, class optimization, and cross-platform design assistance across major development environments.

Category
Visit Server

Tools

generate_component

Generate Tailwind CSS components with AI assistance using Gemini

get_shadcn_component

Get shadcn/ui component source code and usage examples

create_project

Create a complete project with Vite + Tailwind + shadcn/ui setup

optimize_classes

Optimize and clean up Tailwind CSS classes

create_theme

Generate custom Tailwind theme with AI assistance

analyze_design

Analyze design with AI for improvements and best practices

generate_preview

Generate visual preview of Tailwind components

convert_to_tailwind

Convert CSS/SCSS to Tailwind classes

suggest_improvements

Get AI-powered suggestions for design improvements

create_layout

Generate responsive layouts with Tailwind CSS

README

MCP Tailwind Gemini Server

GitHub License Node.js TypeScript Tailwind CSS

Advanced Model Context Protocol (MCP) server for Tailwind CSS with Gemini AI integration and cross-platform support for intelligent design assistance across all major development environments.

🌟 Features

🤖 AI-Powered Design

  • Intelligent Component Generation: Create sophisticated Tailwind components using Gemini AI
  • Smart Optimization: AI-driven class optimization and conflict resolution
  • Design Analysis: Comprehensive design quality assessment with improvement suggestions
  • Theme Creation: Generate cohesive design systems with AI assistance

🎨 Tailwind CSS Tools

  • Component Generator: Create buttons, cards, forms, navigation, modals, and custom components
  • Class Optimizer: Clean up redundant classes and resolve conflicts
  • CSS Converter: Transform existing CSS/SCSS to Tailwind classes
  • Layout Generator: Build responsive layouts for dashboards, landing pages, blogs, and more
  • Theme Creator: Generate custom color palettes, typography, and design tokens
  • Preview Generator: Visual component previews with screenshot capability

🌐 Cross-Platform Integration

  • Multi-Framework Support: React, Vue, Svelte, Angular with automatic component conversion
  • Build Tool Integration: Vite, Webpack, Next.js, Nuxt, SvelteKit project generation
  • IDE Extensions: VS Code, WebStorm plugins with live assistance
  • Design Tool Sync: Figma plugin for design-to-code conversion
  • Universal Deployment: CLI tools, browser extensions, and API integrations

🚀 Advanced Capabilities

  • Framework Adapters: Automatic component conversion between frameworks
  • Universal Project Generation: Create full-stack applications with any tech stack
  • Multi-Platform Deployment: Deploy to development environments, production, and design tools
  • External API Integration: Gemini, OpenAI, Claude, Figma for enhanced AI capabilities
  • Responsive Design: Mobile-first approach with breakpoint optimization
  • Accessibility: WCAG compliance checking and enhancement suggestions
  • Performance: Bundle size optimization and render performance analysis
  • Visual Preview: Screenshot generation for component visualization

📦 Installation

Prerequisites

  • Node.js 18 or higher
  • npm or yarn package manager
  • Docker (for containerized deployment)
  • (Optional) Gemini API key for AI features

Quick Start with Docker

  1. Clone the repository:
git clone https://github.com/Tai-DT/mcp-tailwind-gemini.git
cd mcp-tailwind-gemini
  1. Set up environment:
# Copy environment template
cp env.example .env

# Edit .env file with your API key
# GEMINI_API_KEY=your_actual_api_key_here
  1. Deploy with Docker:
# Build and run production container
docker-compose -f docker-compose.prod.yml up -d

# Check status
docker ps | grep mcp-tailwind-server

Local Development Setup

  1. Install dependencies:
npm install
  1. Build the project:
npm run build
  1. Set up environment:
# Copy environment template
cp env.example .env

# Edit with your API key
# GEMINI_API_KEY=your_actual_api_key_here
  1. Run development server:
npm run dev

Claude Desktop Configuration

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "tailwind-gemini": {
      "command": "npx",
      "args": ["mcp-gemini-cli", "--allow-npx"],
      "env": {
        "GEMINI_API_KEY": ""your-api-key-here"
      }
}

Config File Locations:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\\Claude\\claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json

Alternative Configuration (using npm):

{
  "mcpServers": {
    "mcp-tailwind-gemini": {
      "command": "npm",
      "args": ["run", "start"],
      "cwd": "/path/to/your/mcp-tailwind-gemini",
      "env": {
        "GEMINI_API_KEY": "your_gemini_api_key_here"
      }
    }
  }
}

For Cursor IDE

Add to your ~/.cursor/mcp.json:

{
  "mcpServers": {
    "mcp-tailwind-gemini": {
      "command": "node",
      "args": ["/path/to/your/mcp-tailwind-gemini/dist/index.js"],
      "env": {
        "GEMINI_API_KEY": "your_gemini_api_key_here"
      }
    }
  }
}

🛠️ Available Tools

Component Generation

{
  "tool": "generate_component",
  "description": "Create a responsive button component",
  "type": "button",
  "variant": "primary",
  "size": "lg",
  "framework": "react",
  "responsive": true,
  "accessibility": true
}

Class Optimization

{
  "tool": "optimize_classes", 
  "html": "<div class=\"p-4 px-4 py-4 text-blue-500 text-blue-600\">Content</div>",
  "removeRedundant": true,
  "mergeConflicts": true
}

Theme Creation

{
  "tool": "create_theme",
  "brandColor": "#3B82F6",
  "style": "modern",
  "colorCount": 9,
  "includeConfig": true
}

Design Analysis

{
  "tool": "analyze_design",
  "html": "<div>...</div>",
  "checkAccessibility": true,
  "checkResponsive": true,
  "checkPerformance": true
}

Preview Generation

{
  "tool": "generate_preview",
  "html": "<button class=\"bg-blue-500 text-white px-4 py-2 rounded\">Button</button>",
  "width": 800,
  "height": 600
}

CSS Conversion

{
  "tool": "convert_to_tailwind",
  "code": ".button { padding: 1rem; background: #3B82F6; }",
  "format": "css",
  "optimize": true
}

AI Suggestions

{
  "tool": "suggest_improvements",
  "html": "<div>...</div>",
  "context": "E-commerce product card",
  "focusAreas": ["accessibility", "performance", "ux"]
}

Layout Generation

{
  "tool": "create_layout",
  "type": "dashboard",
  "sections": ["header", "sidebar", "main", "footer"],
  "complexity": "medium",
  "framework": "react"
}

🎯 Use Cases

Creating Components

Generate production-ready components with AI assistance:

  • Modern button variants with accessibility features
  • Responsive card layouts with proper spacing
  • Form components with validation styling
  • Navigation menus with mobile-first design

Design Optimization

Improve existing designs with intelligent analysis:

  • Remove redundant Tailwind classes
  • Resolve conflicting utility classes
  • Optimize for performance and maintainability
  • Enhance accessibility compliance

Theme Development

Build comprehensive design systems:

  • Generate cohesive color palettes
  • Create typography scales
  • Design spacing systems
  • Export Tailwind configuration files

🌐 Cross-Platform Usage

Multi-Framework Development

// Convert HTML component to any framework
{
  "tool": "generate_component",
  "description": "Modern button component",
  "framework": "react", // or "vue", "svelte", "angular"
  "typescript": true,
  "features": ["loading-state", "variant-support"]
}

Universal Project Generation

// Create full-stack project with any tech stack
{
  "tool": "create_project",
  "name": "My App",
  "framework": "react",
  "buildTool": "vite", // or "webpack", "nextjs", "nuxt"
  "features": ["typescript", "tailwind", "testing", "deployment"]
}

Platform Integration

# VS Code Extension
code --install-extension tailwind-mcp-assistant

# WebStorm Plugin  
# Install from JetBrains Marketplace: "Tailwind MCP Assistant"

# Figma Plugin
# Search "Tailwind MCP" in Figma Community

# CLI Tool
npm install -g tailwind-mcp-cli
tmcp generate --framework react --description "Product card"

# Browser Extension
# Install from Chrome Web Store: "Tailwind MCP Assistant"

Cross-Platform Workflow

# 1. Design in Figma → Extract with plugin
# 2. Convert to multiple frameworks  
tmcp convert --from figma --to react,vue,svelte

# 3. Generate optimized projects
tmcp create-project --framework react --build vite
tmcp create-project --framework vue --build nuxt

# 4. Deploy to multiple platforms
tmcp deploy --platforms vercel,netlify,aws

Code Migration

Convert existing CSS to Tailwind:

  • Transform legacy CSS to utility classes
  • Migrate from other frameworks
  • Optimize class usage patterns
  • Maintain visual consistency

🔧 Development

Running Locally

# Development mode with hot reload
npm run dev

# Build for production
npm run build

# Start production server
npm start

Testing MCP Server

  1. Test with echo command:
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/list"}' | node dist/index.js
  1. Test with a simple tool call:
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": {"name": "generate_component", "arguments": {"description": "A simple button", "type": "button"}}}' | node dist/index.js
  1. Test with environment variable:
GEMINI_API_KEY="your_key" node dist/index.js

Environment Variables

  • GEMINI_API_KEY: Your Google Gemini API key (optional)
  • NODE_ENV: Environment mode (development/production)

Project Structure

src/
├── index.ts              # Main MCP server
├── tools/                # MCP tool implementations
│   ├── component-generator.ts
│   ├── class-optimizer.ts
│   ├── theme-creator.ts
│   ├── design-analyzer.ts
│   ├── preview-generator.ts
│   ├── css-converter.ts
│   ├── ai-suggestions.ts
│   └── layout-generator.ts
└── utils/
    └── gemini.ts          # Gemini AI integration

🤝 Contributing

We welcome contributions! Please see our contributing guidelines for details.

Development Setup

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

📄 License

MIT License - see LICENSE file for details.

🐳 Docker Deployment

Quick Docker Setup

# Build production image
docker build -f Dockerfile.runtime -t mcp-tailwind-runtime:latest .

# Run container
docker run -d \
  --name mcp-tailwind-server \
  --env-file .env \
  --restart unless-stopped \
  mcp-tailwind-runtime:latest

Docker Compose (Recommended)

# Start production stack
docker-compose -f docker-compose.prod.yml up -d

# View logs
docker-compose -f docker-compose.prod.yml logs -f

# Stop services
docker-compose -f docker-compose.prod.yml down

Security Best Practices

  1. Environment Variables:

    # Use .env file (never commit to Git)
    cp env.example .env
    # Edit .env with your actual API key
    
  2. Container Security:

    # Run with resource limits
    docker run -d \
      --name mcp-tailwind-server \
      --env-file .env \
      --memory=512m \
      --cpus=1.0 \
      --restart unless-stopped \
      mcp-tailwind-runtime:latest
    
  3. Network Isolation:

    # Create isolated network
    docker network create mcp-network
    
    # Run with custom network
    docker run -d \
      --name mcp-tailwind-server \
      --network mcp-network \
      --env-file .env \
      --restart unless-stopped \
      mcp-tailwind-runtime:latest
    

For detailed Docker and security guide, see DOCKER-SECURITY-GUIDE.md.

🔧 Troubleshooting

Common Issues

  1. MCP Server not starting:

    • Ensure you've run npm run build first
    • Check that dist/index.js exists
    • Verify Node.js version is 18+
  2. Gemini API errors:

    • Set your GEMINI_API_KEY environment variable
    • Verify the API key is valid and has proper permissions
    • Check your internet connection
  3. Docker container issues:

    # Check container logs
    docker logs mcp-tailwind-server
    
    # Verify environment
    docker exec mcp-tailwind-server env | grep GEMINI
    
    # Restart container
    docker restart mcp-tailwind-server
    
  4. Claude Desktop not connecting:

    • Restart Claude Desktop after updating config
    • Check the config file path is correct
    • Verify JSON syntax is valid
  5. Build errors:

    # Clean and rebuild
    rm -rf dist/ node_modules/
    npm install
    npm run build
    

Debug Mode

# Run with debug logging
DEBUG=mcp:* node dist/index.js

# Docker debug
docker run -it --rm \
  --env-file .env \
  mcp-tailwind-runtime:latest npm run dev

🙋‍♂️ Support


Built with ❤️ for the Tailwind CSS and AI community

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured