MCP Tabular Data Analysis Server
Enables comprehensive analysis of CSV files and SQLite databases through tools for statistics, correlations, anomaly detection, pivot tables, time series analysis, visualization, and automated insights discovery.
README
MCP Tabular Data Analysis Server
A Model Context Protocol (MCP) server that provides tools for analyzing numeric and tabular data. Works with CSV files and SQLite databases.
Demo
auto_insights
<img width="656" height="815" alt="image" src="https://github.com/user-attachments/assets/5555e251-55b8-464e-9c92-91f9059a5d0f" />
data_quality_report
<img width="854" height="856" alt="image" src="https://github.com/user-attachments/assets/bb7fcc7f-35a6-4fb2-8b35-5eafd6ce782b" />
analyze_time_series
<img width="600" height="873" alt="image" src="https://github.com/user-attachments/assets/3e5a3c75-0f8d-4f6e-b745-a1e4b33cf809" />
Features
Core Tools
| Tool | Description |
|---|---|
list_data_files |
List available CSV and SQLite files in the data directory |
describe_dataset |
Generate statistics for a dataset (shape, types, distributions, missing values) |
detect_anomalies |
Find outliers using Z-score or IQR methods |
compute_correlation |
Calculate correlation matrices between numeric columns |
filter_rows |
Filter data using various operators (eq, gt, lt, contains, etc.) |
group_aggregate |
Group data and compute aggregations (sum, mean, count, etc.) |
query_sqlite |
Execute SQL queries on SQLite databases |
list_tables |
List all tables and schemas in a SQLite database |
Analytics Tools
| Tool | Description |
|---|---|
create_pivot_table |
Create Excel-style pivot tables with flexible aggregations |
data_quality_report |
Data quality assessment with scores and recommendations |
analyze_time_series |
Time series analysis with trends, seasonality, and moving averages |
generate_chart |
Create visualizations (bar, line, scatter, histogram, pie, box plots) |
merge_datasets |
Join/merge two datasets together (inner, left, right, outer joins) |
statistical_test |
Hypothesis testing (t-test, ANOVA, chi-squared, correlation tests) |
auto_insights |
Discover patterns and insights |
export_data |
Export filtered/transformed data to new CSV files |
Installation
Prerequisites
- Python 3.10+
- uv (recommended) or pip
Install with uv
cd mcp-tabular
uv sync
Install with pip
cd mcp-tabular
pip install -e .
Usage
Running the Server Directly
# With uv
uv run mcp-tabular
# With pip installation
mcp-tabular
Configure with Claude Desktop
-
Locate your Claude Desktop config file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
- macOS:
-
Add this configuration (replace
/Users/kirondeb/mcp-tabularwith your actual path):
{
"mcpServers": {
"tabular-data": {
"command": "/Users/kirondeb/mcp-tabular/.venv/bin/python",
"args": [
"-m",
"mcp_tabular.server"
]
}
}
}
-
Restart Claude Desktop (quit and reopen)
-
Test by asking Claude: "Describe the dataset in data/sample_sales.csv"
See CONNECT_TO_CLAUDE_DESKTOP.md for detailed instructions and troubleshooting.
See TEST_PROMPTS.md for example prompts.
Sample Data
The project includes sample data for testing:
data/sample_sales.csv- Sales transaction datadata/sample.db- SQLite database with customers, orders, and products tables
To create the SQLite sample database:
python scripts/create_sample_db.py
Path Resolution
All file paths are resolved relative to the project root directory:
- Relative paths like
data/sample_sales.csvwork from any working directory - Absolute paths also work as expected
- Paths resolve relative to where
mcp_tabularis installed
Tool Examples
List Data Files
List available data files:
list_data_files()
Lists all CSV and SQLite files in the data directory with metadata.
Describe Dataset
Generate statistics for a dataset:
describe_dataset(file_path="data/sample_sales.csv")
Includes shape, column types, numeric statistics (mean, std, median, skew, kurtosis), categorical value counts, and a sample preview.
Detect Anomalies
Find outliers in numeric columns:
detect_anomalies(
file_path="data/sample_sales.csv",
column="total_sales",
method="zscore",
threshold=3.0
)
Supports zscore and iqr methods.
Compute Correlation
Calculate correlations between numeric columns:
compute_correlation(
file_path="data/sample_sales.csv",
method="pearson"
)
Includes full correlation matrix and top correlations ranked by strength.
Filter Rows
Filter data based on conditions:
filter_rows(
file_path="data/sample_sales.csv",
column="category",
operator="eq",
value="Electronics"
)
Operators: eq, ne, gt, gte, lt, lte, contains, startswith, endswith
Group & Aggregate
Group data and compute aggregations:
group_aggregate(
file_path="data/sample_sales.csv",
group_by=["category", "region"],
aggregations={"total_sales": ["sum", "mean"], "quantity": ["count"]}
)
Query SQLite
Execute SQL queries on databases:
query_sqlite(
db_path="data/sample.db",
query="SELECT * FROM customers WHERE lifetime_value > 1000"
)
List Tables
List tables and schemas in a SQLite database:
list_tables(db_path="data/sample.db")
Advanced Analytics Examples
Create Pivot Table
Create Excel-style pivot tables:
create_pivot_table(
file_path="data/sample_sales.csv",
index=["region"],
columns=["category"],
values="total_sales",
aggfunc="sum"
)
Data Quality Report
Generate a data quality assessment:
data_quality_report(file_path="data/sample_sales.csv")
Includes completeness score, duplicate detection, outlier analysis, and an overall quality grade (A-F).
Time Series Analysis
Analyze trends and seasonality:
analyze_time_series(
file_path="data/sample_sales.csv",
date_column="order_date",
value_column="total_sales",
freq="M",
include_forecast=True
)
Generate Charts
Create visualizations (returned as base64 images):
generate_chart(
file_path="data/sample_sales.csv",
chart_type="bar",
x_column="category",
y_column="total_sales",
title="Sales by Category"
)
Supported chart types: bar, line, scatter, histogram, pie, box
Merge Datasets
Join or merge two datasets:
merge_datasets(
file_path_left="data/orders.csv",
file_path_right="data/customers.csv",
on=["customer_id"],
how="left"
)
Statistical Testing
Run hypothesis tests:
statistical_test(
file_path="data/sample_sales.csv",
test_type="ttest_ind",
column1="total_sales",
group_column="region",
alpha=0.05
)
Supported tests: ttest_ind, ttest_paired, chi_squared, anova, mann_whitney, pearson, spearman
Auto Insights
Discover patterns and insights:
auto_insights(file_path="data/sample_sales.csv")
Includes insights about correlations, outliers, skewed distributions, missing data, and more.
Export Data
Export filtered data to a new CSV:
export_data(
file_path="data/sample_sales.csv",
output_name="electronics_sales",
filter_column="category",
filter_operator="eq",
filter_value="Electronics",
sort_by="total_sales",
sort_ascending=False
)
Development
Run Tests
uv run pytest
Project Structure
mcp-tabular/
├── src/
│ └── mcp_tabular/
│ ├── __init__.py
│ └── server.py # Main MCP server implementation
├── data/
│ ├── sample_sales.csv # Sample CSV data
│ └── sample.db # Sample SQLite database
├── scripts/
│ └── create_sample_db.py
├── pyproject.toml
├── claude_desktop_config.json
└── README.md
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
E2B
Using MCP to run code via e2b.
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Neon Database
MCP server for interacting with Neon Management API and databases