MCP-Smallest.ai

MCP-Smallest.ai

A Model Context Protocol server implementation that provides a standardized interface for interacting with Smallest.ai's knowledge base management system.

Category
Visit Server

Tools

listKnowledgeBases

createKnowledgeBase

getKnowledgeBase

README

image

MCP-Smallest.ai

A Model Context Protocol (MCP) server implementation for Smallest.ai API integration. This project provides a standardized interface for interacting with Smallest.ai's knowledge base management system.

Architecture

System Overview

Untitled-2025-03-21-0340(6)

┌─────────────────┐     ┌─────────────────┐     ┌─────────────────┐
│                 │     │                 │     │                 │
│  Client App     │◄────┤   MCP Server    │◄────┤  Smallest.ai    │
│                 │     │                 │     │    API          │
└─────────────────┘     └─────────────────┘     └─────────────────┘

Component Details

1. Client Application Layer

  • Implements MCP client protocol
  • Handles request formatting
  • Manages response parsing
  • Provides error handling

2. MCP Server Layer

  • Protocol Handler

    • Manages MCP protocol communication
    • Handles client connections
    • Routes requests to appropriate tools
  • Tool Implementation

    • Knowledge base management tools
    • Parameter validation
    • Response formatting
    • Error handling
  • API Integration

    • Smallest.ai API communication
    • Authentication management
    • Request/response handling

3. Smallest.ai API Layer

  • Knowledge base management
  • Data storage and retrieval
  • Authentication and authorization

Data Flow

1. Client Request
   └─► MCP Protocol Validation
       └─► Tool Parameter Validation
           └─► API Request Formation
               └─► Smallest.ai API Call
                   └─► Response Processing
                       └─► Client Response

Security Architecture

┌─────────────────┐
│  Client Auth    │
└────────┬────────┘
         │
┌────────▼────────┐
│  MCP Validation │
└────────┬────────┘
         │
┌────────▼────────┐
│  API Auth       │
└────────┬────────┘
         │
┌────────▼────────┐
│  Smallest.ai    │
└─────────────────┘

Overview

This project implements an MCP server that acts as a middleware between clients and the Smallest.ai API. It provides a standardized way to interact with Smallest.ai's knowledge base management features through the Model Context Protocol.

Architecture

[Client Application] <---> [MCP Server] <---> [Smallest.ai API]

Components

  1. MCP Server

    • Handles client requests
    • Manages API communication
    • Provides standardized responses
    • Implements error handling
  2. Knowledge Base Tools

    • listKnowledgeBases: Lists all knowledge bases
    • createKnowledgeBase: Creates new knowledge bases
    • getKnowledgeBase: Retrieves specific knowledge base details
  3. Documentation Resource

    • Available at docs://smallest.ai
    • Provides usage instructions and examples

Prerequisites

  • Node.js 18+ or Bun runtime
  • Smallest.ai API key
  • TypeScript knowledge

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/MCP-smallest.ai.git
cd MCP-smallest.ai
  1. Install dependencies:
bun install
  1. Create a .env file in the root directory:
SMALLEST_AI_API_KEY=your_api_key_here

Configuration

Create a config.ts file with your Smallest.ai API configuration:

export const config = {
    API_KEY: process.env.SMALLEST_AI_API_KEY,
    BASE_URL: 'https://atoms-api.smallest.ai/api/v1'
};

Usage

Starting the Server

bun run index.ts

Testing the Server

bun run test-client.ts

Available Tools

  1. List Knowledge Bases
await client.callTool({
  name: "listKnowledgeBases",
  arguments: {}
});
  1. Create Knowledge Base
await client.callTool({
  name: "createKnowledgeBase",
  arguments: {
    name: "My Knowledge Base",
    description: "Description of the knowledge base"
  }
});
  1. Get Knowledge Base
await client.callTool({
  name: "getKnowledgeBase",
  arguments: {
    id: "knowledge_base_id"
  }
});

Response Format

All responses follow this structure:

{
  content: [{
    type: "text",
    text: JSON.stringify(data, null, 2)
  }]
}

Error Handling

The server implements comprehensive error handling:

  • HTTP errors
  • API errors
  • Parameter validation errors
  • Type-safe error responses

Development

Project Structure

MCP-smallest.ai/
├── index.ts           # MCP server implementation
├── test-client.ts     # Test client implementation
├── config.ts          # Configuration file
├── package.json       # Project dependencies
├── tsconfig.json      # TypeScript configuration
└── README.md          # This file

Adding New Tools

  1. Define the tool in index.ts:
server.tool(
  "toolName",
  {
    param1: z.string(),
    param2: z.number()
  },
  async (args) => {
    // Implementation
  }
);
  1. Update documentation in the resource:
server.resource(
  "documentation",
  "docs://smallest.ai",
  async (uri) => ({
    contents: [{
      uri: uri.href,
      text: `Updated documentation...`
    }]
  })
);

Security

  • API keys are stored in environment variables
  • All requests are authenticated
  • Parameter validation is implemented
  • Error messages are sanitized

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured