
MCP-Smallest.ai
A Model Context Protocol server implementation that provides a standardized interface for interacting with Smallest.ai's knowledge base management system.
Tools
listKnowledgeBases
createKnowledgeBase
getKnowledgeBase
README
MCP-Smallest.ai
A Model Context Protocol (MCP) server implementation for Smallest.ai API integration. This project provides a standardized interface for interacting with Smallest.ai's knowledge base management system.
Architecture
System Overview
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ │ │ │ │ │
│ Client App │◄────┤ MCP Server │◄────┤ Smallest.ai │
│ │ │ │ │ API │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Component Details
1. Client Application Layer
- Implements MCP client protocol
- Handles request formatting
- Manages response parsing
- Provides error handling
2. MCP Server Layer
-
Protocol Handler
- Manages MCP protocol communication
- Handles client connections
- Routes requests to appropriate tools
-
Tool Implementation
- Knowledge base management tools
- Parameter validation
- Response formatting
- Error handling
-
API Integration
- Smallest.ai API communication
- Authentication management
- Request/response handling
3. Smallest.ai API Layer
- Knowledge base management
- Data storage and retrieval
- Authentication and authorization
Data Flow
1. Client Request
└─► MCP Protocol Validation
└─► Tool Parameter Validation
└─► API Request Formation
└─► Smallest.ai API Call
└─► Response Processing
└─► Client Response
Security Architecture
┌─────────────────┐
│ Client Auth │
└────────┬────────┘
│
┌────────▼────────┐
│ MCP Validation │
└────────┬────────┘
│
┌────────▼────────┐
│ API Auth │
└────────┬────────┘
│
┌────────▼────────┐
│ Smallest.ai │
└─────────────────┘
Overview
This project implements an MCP server that acts as a middleware between clients and the Smallest.ai API. It provides a standardized way to interact with Smallest.ai's knowledge base management features through the Model Context Protocol.
Architecture
[Client Application] <---> [MCP Server] <---> [Smallest.ai API]
Components
-
MCP Server
- Handles client requests
- Manages API communication
- Provides standardized responses
- Implements error handling
-
Knowledge Base Tools
listKnowledgeBases
: Lists all knowledge basescreateKnowledgeBase
: Creates new knowledge basesgetKnowledgeBase
: Retrieves specific knowledge base details
-
Documentation Resource
- Available at
docs://smallest.ai
- Provides usage instructions and examples
- Available at
Prerequisites
- Node.js 18+ or Bun runtime
- Smallest.ai API key
- TypeScript knowledge
Installation
- Clone the repository:
git clone https://github.com/yourusername/MCP-smallest.ai.git
cd MCP-smallest.ai
- Install dependencies:
bun install
- Create a
.env
file in the root directory:
SMALLEST_AI_API_KEY=your_api_key_here
Configuration
Create a config.ts
file with your Smallest.ai API configuration:
export const config = {
API_KEY: process.env.SMALLEST_AI_API_KEY,
BASE_URL: 'https://atoms-api.smallest.ai/api/v1'
};
Usage
Starting the Server
bun run index.ts
Testing the Server
bun run test-client.ts
Available Tools
- List Knowledge Bases
await client.callTool({
name: "listKnowledgeBases",
arguments: {}
});
- Create Knowledge Base
await client.callTool({
name: "createKnowledgeBase",
arguments: {
name: "My Knowledge Base",
description: "Description of the knowledge base"
}
});
- Get Knowledge Base
await client.callTool({
name: "getKnowledgeBase",
arguments: {
id: "knowledge_base_id"
}
});
Response Format
All responses follow this structure:
{
content: [{
type: "text",
text: JSON.stringify(data, null, 2)
}]
}
Error Handling
The server implements comprehensive error handling:
- HTTP errors
- API errors
- Parameter validation errors
- Type-safe error responses
Development
Project Structure
MCP-smallest.ai/
├── index.ts # MCP server implementation
├── test-client.ts # Test client implementation
├── config.ts # Configuration file
├── package.json # Project dependencies
├── tsconfig.json # TypeScript configuration
└── README.md # This file
Adding New Tools
- Define the tool in
index.ts
:
server.tool(
"toolName",
{
param1: z.string(),
param2: z.number()
},
async (args) => {
// Implementation
}
);
- Update documentation in the resource:
server.resource(
"documentation",
"docs://smallest.ai",
async (uri) => ({
contents: [{
uri: uri.href,
text: `Updated documentation...`
}]
})
);
Security
- API keys are stored in environment variables
- All requests are authenticated
- Parameter validation is implemented
- Error messages are sanitized
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.