
MCP Server Trello
Enables seamless integration with Trello boards, allowing users to manage cards, lists, and activities while automatically handling rate limiting and providing type safety.
Tools
get_cards_by_list_id
Fetch cards from a specific Trello list
get_lists
Retrieve all lists from the specified board
get_recent_activity
Fetch recent activity on the Trello board
add_card_to_list
Add a new card to a specified list
update_card_details
Update an existing card's details
archive_card
Send a card to the archive
add_list_to_board
Add a new list to the board
archive_list
Send a list to the archive
get_my_cards
Fetch all cards assigned to the current user
README
MCP Server Trello
A Model Context Protocol (MCP) server that provides tools for interacting with Trello boards. This server enables seamless integration with Trello's API while handling rate limiting, type safety, and error handling automatically.
Features
- Full Trello Board Integration: Interact with cards, lists, and board activities
- Built-in Rate Limiting: Respects Trello's API limits (300 requests/10s per API key, 100 requests/10s per token)
- Type-Safe Implementation: Written in TypeScript with comprehensive type definitions
- Input Validation: Robust validation for all API inputs
- Error Handling: Graceful error handling with informative messages
Installation
npm install @modelcontextprotocol/mcp-server-trello
Configuration
Add the server to your MCP settings file with the following configuration:
{
"mcpServers": {
"trello": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-trello"],
"env": {
"TRELLO_API_KEY": "your-api-key",
"TRELLO_TOKEN": "your-token",
"TRELLO_BOARD_ID": "your-board-id"
}
}
}
}
Required Environment Variables
TRELLO_API_KEY
: Your Trello API key (get from https://trello.com/app-key)TRELLO_TOKEN
: Your Trello token (generate using your API key)TRELLO_BOARD_ID
: ID of the Trello board to interact with (found in board URL)
Available Tools
get_cards_by_list_id
Fetch all cards from a specific list.
{
name: 'get_cards_by_list_id',
arguments: {
listId: string // ID of the Trello list
}
}
get_lists
Retrieve all lists from the configured board.
{
name: 'get_lists',
arguments: {}
}
get_recent_activity
Fetch recent activity on the board.
{
name: 'get_recent_activity',
arguments: {
limit?: number // Optional: Number of activities to fetch (default: 10)
}
}
add_card_to_list
Add a new card to a specified list.
{
name: 'add_card_to_list',
arguments: {
listId: string, // ID of the list to add the card to
name: string, // Name of the card
description?: string, // Optional: Description of the card
dueDate?: string, // Optional: Due date (ISO 8601 format)
labels?: string[] // Optional: Array of label IDs
}
}
update_card_details
Update an existing card's details.
{
name: 'update_card_details',
arguments: {
cardId: string, // ID of the card to update
name?: string, // Optional: New name for the card
description?: string, // Optional: New description
dueDate?: string, // Optional: New due date (ISO 8601 format)
labels?: string[] // Optional: New array of label IDs
}
}
archive_card
Send a card to the archive.
{
name: 'archive_card',
arguments: {
cardId: string // ID of the card to archive
}
}
add_list_to_board
Add a new list to the board.
{
name: 'add_list_to_board',
arguments: {
name: string // Name of the new list
}
}
archive_list
Send a list to the archive.
{
name: 'archive_list',
arguments: {
listId: string // ID of the list to archive
}
}
get_my_cards
Fetch all cards assigned to the current user.
{
name: 'get_my_cards',
arguments: {}
}
Rate Limiting
The server implements a token bucket algorithm for rate limiting to comply with Trello's API limits:
- 300 requests per 10 seconds per API key
- 100 requests per 10 seconds per token
Rate limiting is handled automatically, and requests will be queued if limits are reached.
Error Handling
The server provides detailed error messages for various scenarios:
- Invalid input parameters
- Rate limit exceeded
- API authentication errors
- Network issues
- Invalid board/list/card IDs
Development
Prerequisites
- Node.js 16 or higher
- npm or yarn
Setup
- Clone the repository
git clone https://github.com/modelcontextprotocol/server-trello.git
cd server-trello
- Install dependencies
npm install
- Build the project
npm run build
Running Tests
npm test
Contributing
Contributions are welcome! Please read our Contributing Guide for details on our code of conduct and the process for submitting pull requests.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Built with the Model Context Protocol SDK
- Uses the Trello REST API
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.