MCP Server Template for Cloudflare Workers

MCP Server Template for Cloudflare Workers

A production-ready template for building MCP servers on Cloudflare Workers with social login (Google, Microsoft, GitHub), D1 database, admin dashboard, and built-in AI chat testing across multiple providers.

Category
Visit Server

README

MCP Server Template for Cloudflare Workers

A production-ready template for building MCP (Model Context Protocol) servers on Cloudflare Workers with better-auth social login.

Features

  • better-auth Social Login - Google, Microsoft, and GitHub OAuth with automatic session management
  • MCP OAuth Provider - Dynamic client registration for Claude.ai and Claude Code
  • Cloudflare Workers - Serverless deployment with global edge distribution
  • D1 Database - SQLite-compatible database with Drizzle ORM
  • Durable Objects - Persistent MCP session storage
  • MCP Tools - Example tools with error handling patterns
  • MCP Resources - Read-only data exposure (future-ready for Claude.ai)
  • MCP Prompts - Templated prompt definitions (future-ready for Claude.ai)
  • Marketing homepage - Professional landing page in Jezweb style
  • Admin Dashboard - Manage tokens, view tools/resources/prompts
  • AI Chat Testing - Built-in AI chat to test MCP tools (Workers AI + external providers)
  • Multi-Provider AI - Workers AI (free), OpenAI, Anthropic, Google AI Studio
  • Conversation Memory - D1-backed persistent chat history with configurable TTL
  • Internal Agent - Optional ask_agent tool with Workers AI gatekeeper for voice agents

Quick Start

1. Clone and Install

# Copy this template to your new project
cp -r mcp-server-template-cloudflare my-new-mcp
cd my-new-mcp

# Install dependencies
npm install

2. Configure Cloudflare

Update wrangler.jsonc:

{
  "name": "my-new-mcp",  // Your worker name
  "kv_namespaces": [
    {
      "binding": "OAUTH_KV",
      "id": "YOUR_KV_NAMESPACE_ID"  // Create with: npx wrangler kv:namespace create OAUTH_KV
    }
  ],
  "d1_databases": [
    {
      "binding": "DB",
      "database_name": "my-mcp-db",
      "database_id": "YOUR_D1_DATABASE_ID"  // Create with: npx wrangler d1 create my-mcp-db
    }
  ],
  "durable_objects": {
    "bindings": [
      {
        "name": "MCP_OBJECT",
        "class_name": "MyMCP"  // Update if you rename the class
      }
    ]
  },
  "migrations": [
    {
      "tag": "v1",
      "new_sqlite_classes": ["MyMCP"]  // Must match class_name above
    }
  ],
  "vars": {
    "ENABLE_CONVERSATION_MEMORY": "true",  // D1-backed chat history
    "ENABLE_INTERNAL_AGENT": "false"       // ask_agent tool (for voice agents)
  }
}

3. Set Up OAuth Provider (Google)

  1. Go to Google Cloud Console
  2. Create a new project or select existing
  3. Enable the APIs you need (e.g., Google Tasks API, Calendar API)
  4. Go to "APIs & Services" → "Credentials"
  5. Create OAuth 2.0 Client ID (Web application)
  6. Add authorized redirect URI: https://your-worker.workers.dev/api/auth/callback/google

Note: better-auth uses /api/auth/callback/{provider} pattern for OAuth callbacks.

Alternative Providers (Microsoft Entra, GitHub):

  • See docs/BETTER_AUTH_ARCHITECTURE.md for setup instructions
  • Each provider requires its own OAuth app and secrets

4. Set Secrets

# Required: Google OAuth
echo "YOUR_GOOGLE_CLIENT_ID" | npx wrangler secret put GOOGLE_CLIENT_ID
echo "YOUR_GOOGLE_CLIENT_SECRET" | npx wrangler secret put GOOGLE_CLIENT_SECRET

# Required: better-auth session encryption
python3 -c "import secrets; print(secrets.token_hex(32))" | npx wrangler secret put BETTER_AUTH_SECRET

# Required: Cookie encryption for approved clients
python3 -c "import secrets; print(secrets.token_hex(32))" | npx wrangler secret put COOKIE_ENCRYPTION_KEY

# Optional: For Bearer token authentication
python3 -c "import secrets; print(secrets.token_urlsafe(32))" | npx wrangler secret put AUTH_TOKEN

# Optional: Microsoft Entra
# echo "YOUR_MS_CLIENT_ID" | npx wrangler secret put MICROSOFT_CLIENT_ID
# echo "YOUR_MS_CLIENT_SECRET" | npx wrangler secret put MICROSOFT_CLIENT_SECRET

# Optional: GitHub
# echo "YOUR_GH_CLIENT_ID" | npx wrangler secret put GITHUB_CLIENT_ID
# echo "YOUR_GH_CLIENT_SECRET" | npx wrangler secret put GITHUB_CLIENT_SECRET

5. Deploy

npx wrangler deploy

Customization

Update Server Identity

  1. src/index.ts: Update class name, server name, and tools
  2. src/oauth/google-handler.ts: Update GOOGLE_SCOPES and homepage content
  3. wrangler.jsonc: Update worker name and class references

Google OAuth Scopes

Edit GOOGLE_SCOPES in src/oauth/google-handler.ts:

// Basic user info
const GOOGLE_SCOPES = 'openid email profile';

// Google Tasks
const GOOGLE_SCOPES = 'openid email profile https://www.googleapis.com/auth/tasks';

// Google Calendar (read-only)
const GOOGLE_SCOPES = 'openid email profile https://www.googleapis.com/auth/calendar.readonly';

// Gmail (read-only)
const GOOGLE_SCOPES = 'openid email profile https://www.googleapis.com/auth/gmail.readonly';

Adding Tools

Add tools in the init() method of your MCP class:

this.server.tool(
  'tool_name',                    // Unique identifier
  'Tool description.',            // Shown to Claude
  {
    param1: z.string().describe('Parameter description'),
    param2: z.number().optional().describe('Optional parameter'),
  },
  async ({ param1, param2 }) => {
    try {
      // For Google API calls, use authorizedFetch():
      const response = await this.authorizedFetch(
        `https://api.example.com/endpoint?param=${param1}`
      );

      if (!response.ok) {
        const error = await response.text();
        throw new Error(`API error: ${error}`);
      }

      const data = await response.json();

      return {
        content: [{ type: 'text', text: `Result: ${JSON.stringify(data)}` }],
      };
    } catch (error) {
      const message = error instanceof Error ? error.message : 'Unknown error';
      return {
        content: [{ type: 'text', text: `Error: ${message}` }],
        isError: true,
      };
    }
  }
);

Adding Resources

Resources expose read-only data that LLMs can access. Add resources in the init() method:

this.server.resource(
  'resource_name',              // Unique identifier
  'mcp://my-mcp/resource-path', // URI for the resource
  {
    description: 'What this resource provides',
    mimeType: 'application/json',
  },
  async (uri) => ({
    contents: [{
      uri: uri.href,
      mimeType: 'application/json',
      text: JSON.stringify({
        // Your data here
      }, null, 2),
    }],
  })
);

Note: Claude.ai doesn't support resources yet (as of Dec 2025), but the API does. Adding resources now future-proofs your server.

Adding Prompts

Prompts are templated prompt definitions (like slash commands). Add prompts in the init() method:

this.server.prompt(
  'prompt_name',                // Unique identifier
  'Description of what this prompt does',
  {
    content: z.string().describe('Required parameter'),
    option: z.string().optional().describe('Optional parameter'),
  },
  async ({ content, option }) => ({
    messages: [{
      role: 'user',
      content: {
        type: 'text',
        text: option
          ? `Process this with ${option}: ${content}`
          : `Process this: ${content}`,
      },
    }],
  })
);

Note: Claude.ai doesn't support prompts yet (as of Dec 2025), but the API does. Adding prompts now future-proofs your server.

Admin Dashboard

Access the admin dashboard at /admin after logging in with Google OAuth.

Features:

  • View server info, tools, resources, and prompts
  • Create and manage Bearer auth tokens
  • AI Chat for testing MCP tools

Admin Setup:

Set admin emails (comma-separated):

echo "admin@example.com,user@example.com" | npx wrangler secret put ADMIN_EMAILS

AI Chat Testing

The admin dashboard includes an AI-powered tool tester:

  1. Click the chat bubble icon in the bottom-right corner
  2. Select an AI provider (Workers AI is free)
  3. Ask the AI to test tools, e.g., "test the hello tool with name John"

Supported Providers:

  • Workers AI (Free) - Llama 3.3 70B and other models, no API key needed
  • OpenAI - GPT-4o, GPT-4o-mini, o1
  • Anthropic - Claude 3.5 Sonnet, Claude 3.5 Haiku
  • Google AI Studio - Gemini 2.5 Pro, Gemini 2.5 Flash
  • Groq - Fast inference with Llama 3.3 70B

All external providers use AI Gateway's Compat endpoint - a single OpenAI-compatible API that works for all providers. The gateway handles format conversion automatically.

Setting up External Providers (BYOK - Recommended):

The easiest way is to configure API keys in AI Gateway (no code changes needed):

  1. Go to Cloudflare DashboardAIAI Gateway
  2. Create a gateway named default (or use existing)
  3. Enable Authenticated Gateway (required for BYOK)
  4. Go to Provider KeysAdd API Key
  5. Select provider (OpenAI, Anthropic, etc.) and enter your API key
  6. Create a Gateway Token: User API Tokens → Create → select AI Gateway permissions
  7. Set the token as a Worker secret: echo "token" | npx wrangler secret put CF_AIG_TOKEN
  8. Redeploy: npx wrangler deploy

Keys are securely stored and automatically injected into requests.

Alternative: Environment Secrets

You can also set API keys as Worker secrets (overrides BYOK):

# Anthropic
echo "sk-ant-..." | npx wrangler secret put ANTHROPIC_API_KEY

# OpenAI
echo "sk-..." | npx wrangler secret put OPENAI_API_KEY

# If using Authenticated Gateway, also set:
echo "your-gateway-token" | npx wrangler secret put CF_AIG_TOKEN

# Don't forget to redeploy after setting secrets!
npx wrangler deploy

Note: Workers AI is free and works out of the box. External providers go through Cloudflare AI Gateway for logging, caching, and centralized key management.

AI Gateway Features

The template uses AI Gateway's Compat endpoint - a single OpenAI-compatible API for all providers. Additional features available:

Per-Request Headers (add to your AI calls):

Header Purpose Example
cf-aig-cache-ttl Cache responses (seconds) 3600 = 1 hour
cf-aig-skip-cache Bypass cache true
cf-aig-request-timeout Trigger fallback if slow (ms) 10000
cf-aig-metadata Tag for analytics {"userId":"..."}

Response Headers (check after AI calls):

Header Meaning
cf-aig-cache-status HIT or MISS
cf-aig-step Which fallback was used (0 = primary)

Dashboard-Only Features (configure in Cloudflare dashboard):

  • Guardrails - Content filtering, prompt injection detection
  • DLP - Detect PII, secrets, source code in prompts/responses
  • Rate Limiting - Gateway-level request limits
  • Dynamic Routing - A/B testing, geographic routing, user-based routing
  • Analytics - Usage metrics, costs, error rates

See AI Gateway docs for details.

Architecture

src/
├── index.ts              # Main MCP class with tools, resources, prompts + helper methods
├── types.ts              # TypeScript interfaces (Env, Props, ToolMetadata, ChatMessage)
│
├── lib/
│   ├── auth.ts           # better-auth configuration (social providers, OAuth Provider plugin)
│   ├── db/
│   │   ├── index.ts      # Drizzle D1 database setup
│   │   └── schema.ts     # better-auth tables + custom tables (Drizzle ORM)
│   ├── ai/
│   │   ├── index.ts      # AI Gateway client
│   │   ├── providers.ts  # Provider/model registry
│   │   └── openrouter.ts # Dynamic model fetching from OpenRouter
│   ├── memory/
│   │   └── index.ts      # D1-backed conversation memory
│   ├── agent/
│   │   └── index.ts      # Internal agent pattern (Workers AI gatekeeper)
│   ├── crypto.ts         # Timing-safe token comparison
│   └── rate-limit.ts     # KV-based rate limiting
│
├── admin/
│   ├── routes.ts         # Admin API endpoints
│   ├── ui.ts             # Admin dashboard HTML/CSS/JS
│   ├── chat.ts           # AI chat handler with tool execution + D1 memory
│   ├── middleware.ts     # Admin auth middleware
│   ├── session.ts        # Admin session management
│   └── tokens.ts         # Bearer token CRUD
│
├── oauth/                # MCP OAuth protocol handlers
│   ├── better-auth-handler.ts   # OAuth routes via better-auth sessions
│   └── workers-oauth-utils.ts   # CSRF, state, approval dialog utilities
│
├── pages/
│   ├── homepage.ts       # Server homepage (marketing landing page)
│   └── login.ts          # Social login page (Google, Microsoft, GitHub)
│
├── tools/
│   ├── index.ts          # Tool registry (single source of truth)
│   ├── types.ts          # Tool type definitions
│   ├── utility.ts        # Utility tools (no auth)
│   ├── user.ts           # User tools (require OAuth)
│   └── examples.ts       # Example API call patterns
│
├── resources/
│   ├── index.ts          # Resource registry
│   ├── types.ts          # Resource type definitions
│   └── server.ts         # Server info resources
│
├── prompts/
│   ├── index.ts          # Prompt registry
│   ├── types.ts          # Prompt type definitions
│   └── templates.ts      # Prompt templates
│
└── migrations/
    ├── 0001_better_auth_tables.sql    # better-auth core tables (user, session, account, etc.)
    ├── 0002_custom_tables.sql         # Custom tables (conversation memory, tool execution)
    └── 0003_add_jwks_table.sql        # JWT key rotation table (better-auth v1.4.0)

Key Components

  • MyMCP class: Extends McpAgent with your tools, resources, and prompts
  • ensureValidToken(): Automatically refreshes expired tokens
  • authorizedFetch(): Wrapper for API calls with auth
  • BetterAuthHandler: Hono app handling OAuth routes via better-auth
  • createAuth(): better-auth instance factory with D1 + Drizzle

Included Examples

Utility Tools (no auth required):

Name Description
hello Simple greeting
get_current_time Current date/time in various timezones
generate_uuid Generate UUID v4 (1-10)
base64 Encode/decode Base64 strings
text_stats Count words, characters, lines
random_number Generate random numbers in range
json_format Format/validate JSON
hash_text Generate SHA-256 hash

User Tools (require OAuth):

Name Description
get_user_info Returns authenticated user's Google info
list_my_conversations List your conversation history

Example Tools:

Name Description
example_api_call Demonstrates authorizedFetch() pattern

Resources (read-only data):

Name Description
server_info Server metadata and capabilities
user_profile Authenticated user's profile

Prompts (templates):

Name Description
summarize Content summarization template
analyze Content analysis template (sentiment/technical/business)

Conversation Memory

The template includes optional D1-backed conversation memory for persistent chat history.

Setup:

# 1. Create D1 database
npx wrangler d1 create my-mcp-db

# 2. Add database_id to wrangler.jsonc d1_databases section

# 3. Run migrations
npx wrangler d1 execute my-mcp-db --local --file=migrations/0001_conversations.sql
npx wrangler d1 execute my-mcp-db --remote --file=migrations/0001_conversations.sql

# 4. Enable in wrangler.jsonc vars
"ENABLE_CONVERSATION_MEMORY": "true"

Configuration:

Variable Default Description
ENABLE_CONVERSATION_MEMORY false Enable D1 conversation storage
CONVERSATION_TTL_HOURS 168 Auto-delete conversations after 7 days
MAX_CONTEXT_MESSAGES 50 Max messages to load for context

When disabled, falls back to KV storage (backwards compatible).

Internal Agent

The template includes an optional internal agent pattern for voice agents (e.g., ElevenLabs) and prompt injection protection.

When enabled, the server exposes an ask_agent tool that wraps all other tools behind a Workers AI gatekeeper.

Enable:

// In wrangler.jsonc vars
"ENABLE_INTERNAL_AGENT": "true",
"INTERNAL_AGENT_MODEL": "@cf/qwen/qwen2.5-coder-32b-instruct"

How it works:

  1. External caller uses only ask_agent tool with natural language query
  2. Workers AI gatekeeper validates the request
  3. Internal agent selects and calls appropriate tools
  4. Clean response returned (no raw tool exposure)

Benefits:

  • Security layer against prompt injection from audio
  • Minimal context passed to inner agent (fast)
  • All tools available through single interface

Configuration:

Variable Default Description
ENABLE_INTERNAL_AGENT false Enable ask_agent tool
INTERNAL_AGENT_MODEL @cf/qwen/qwen2.5-coder-32b-instruct Workers AI gatekeeper model

Token Refresh

The template includes automatic token refresh:

  1. authorizedFetch() calls ensureValidToken() before each request
  2. If token expires within 5 minutes, it's refreshed proactively
  3. New tokens are persisted to Durable Object storage
  4. 401 responses invalidate the stored token

This prevents sessions from disconnecting after 1 hour (Google token expiry).

Testing

Local Development

npx wrangler dev

Test with curl

# Test MCP endpoint (requires AUTH_TOKEN secret set)
curl -X POST "https://your-worker.workers.dev/mcp" \
  -H "Authorization: Bearer YOUR_AUTH_TOKEN" \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -d '{"jsonrpc":"2.0","method":"initialize","params":{"protocolVersion":"2024-11-05","capabilities":{},"clientInfo":{"name":"test","version":"1.0"}},"id":1}'

Dependencies

  • @cloudflare/workers-oauth-provider - OAuth 2.0 provider for Workers
  • @modelcontextprotocol/sdk - MCP protocol implementation
  • agents - McpAgent base class with Durable Object integration
  • hono - Lightweight web framework for OAuth routes
  • zod - Schema validation for tool parameters

Security

The template includes multiple security layers:

XSS Protection:

  • HTML escaping for all dynamic content in admin dashboard
  • Data attributes with event delegation (no inline onclick handlers)
  • Content Security Policy headers on admin routes

Session Security:

  • SameSite=Strict cookies prevent CSRF attacks
  • Timing-safe token comparison prevents timing attacks
  • Secure, HttpOnly cookies for admin sessions

Input Validation:

  • All tool inputs have max length limits (1MB default)
  • Chat message size limit (100KB)
  • Safe JSON parsing with fallbacks

Rate Limiting:

  • Admin chat: 30 requests/minute per user
  • Token creation: 10/hour per user

Access Control:

  • User-owned conversations (OAuth email verification)
  • Admin-only dashboard routes
  • Bearer token authentication for programmatic access

Future MCP Features

See docs/MCP_FEATURES_PLAN.md for planning around:

  • Tool Search - defer_loading for 85% token reduction (10+ tools)
  • Sampling - Server requests LLM completion from client (agentic workflows)
  • Completions - Autocomplete for prompt/resource arguments

License

MIT License - See LICENSE for details.


Built by Jezweb — AI agents, MCP servers, and business automation.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured