MCP Server POC
A proof-of-concept MCP server demonstrating various capabilities including mathematical calculations, URL fetching, system information retrieval, data processing, and file operations.
README
MCP Server POC
A cutting-edge Proof of Concept (POC) implementation of a Model Context Protocol (MCP) server using Python and modern technologies. This server provides tools and resources that can be accessed by AI assistants and other MCP clients.
🏗️ Architecture
The MCP Server follows a modular architecture with clear separation of concerns:
graph TB
subgraph "Client Layer"
AI[AI Assistant/Client]
CLI[CLI Client]
end
subgraph "Transport Layer"
STDIO[STDIO Transport]
HTTP[HTTP Transport - Future]
end
subgraph "MCP Server Core"
SERVER[MCP Server Instance]
HANDLER[Request Handler]
TOOLS[Tools Registry]
RESOURCES[Resources Registry]
end
subgraph "Tool Implementations"
CALC[Calculate Tool]
FETCH[Fetch URL Tool]
SYSINFO[System Info Tool]
PROCESS[Process Data Tool]
FILE[File Operations Tool]
end
subgraph "Resource Providers"
FILE_RES[File Resources]
CONFIG_RES[Config Resources]
end
subgraph "External Services"
HTTP_API[HTTP APIs]
FILE_SYS[File System]
end
AI --> STDIO
CLI --> STDIO
STDIO --> SERVER
SERVER --> HANDLER
HANDLER --> TOOLS
HANDLER --> RESOURCES
TOOLS --> CALC
TOOLS --> FETCH
TOOLS --> SYSINFO
TOOLS --> PROCESS
TOOLS --> FILE
RESOURCES --> FILE_RES
RESOURCES --> CONFIG_RES
FETCH --> HTTP_API
FILE --> FILE_SYS
FILE_RES --> FILE_SYS
Workflow Diagram
sequenceDiagram
participant Client
participant Transport
participant Server
participant Tool
participant Resource
Client->>Transport: Initialize Connection
Transport->>Server: Connection Established
Client->>Server: List Tools Request
Server->>Client: Tools List Response
Client->>Server: List Resources Request
Server->>Client: Resources List Response
Client->>Server: Call Tool Request
Server->>Tool: Execute Tool
Tool->>Server: Tool Result
Server->>Client: Tool Response
Client->>Server: Read Resource Request
Server->>Resource: Fetch Resource
Resource->>Server: Resource Data
Server->>Client: Resource Response
🚀 Features
- Modern Python Stack: Built with Python 3.10+ and async/await patterns
- Type Safety: Full type hints with Pydantic models
- High Performance: Uses
uvloopfor enhanced async performance - Comprehensive Tools: Multiple example tools demonstrating various capabilities
- Resource Management: File and configuration resource providers
- Testing: Complete test suite with pytest
- Configuration: Environment-based configuration management
📋 Prerequisites
- Python 3.10 or higher
- pip or poetry for package management
- Git (for cloning the repository)
🛠️ Installation
Step 1: Clone the Repository
git clone <repository-url>
cd MCP-server
Step 2: Create Virtual Environment
# Using venv
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Or using conda
conda create -n mcp-server python=3.10
conda activate mcp-server
Step 3: Install Dependencies
# Using pip
pip install -r requirements.txt
# For development (includes testing tools)
pip install -r requirements-dev.txt
# Or using poetry (if you prefer)
poetry install
Step 4: Configure Environment
# Copy example environment file
cp .env.example .env
# Edit .env file with your settings (optional)
# nano .env
🧪 Testing
Run All Tests
pytest
Run Tests with Coverage
pytest --cov=src --cov-report=html
Run Specific Test
pytest tests/test_server.py::test_calculate_tool -v
🎯 Usage
Running the Server
Method 1: Direct Python Execution
python -m src.server
Method 2: Using the Script
python scripts/run_server.py
Method 3: As a Module
python -m src.server
Example Client Usage
Run the example client to see the server in action:
python examples/example_client.py
Available Tools
The server provides the following tools:
-
calculate: Perform mathematical calculations
- Input:
{"expression": "2 + 2"} - Output: Calculation result
- Input:
-
fetch_url: Fetch content from URLs
- Input:
{"url": "https://example.com", "method": "GET"} - Output: HTTP response content
- Input:
-
get_system_info: Get system information
- Input:
{} - Output: System details and environment variables
- Input:
-
process_data: Process and transform data
- Input:
{"data": "hello", "operation": "uppercase"} - Operations:
reverse,uppercase,lowercase,count
- Input:
-
write_file: Write content to files
- Input:
{"filepath": "output.txt", "content": "Hello World"} - Output: Confirmation message
- Input:
Available Resources
- Example File:
file://example.txt- Example file resource - Server Configuration:
config://server-config- Current server configuration
📁 Project Structure
MCP-server/
├── src/
│ ├── __init__.py # Package initialization
│ ├── server.py # Main MCP server implementation
│ └── config.py # Configuration management
├── tests/
│ ├── __init__.py
│ └── test_server.py # Unit tests
├── examples/
│ └── example_client.py # Example client implementation
├── scripts/
│ └── run_server.py # Server runner script
├── .env.example # Example environment configuration
├── .gitignore # Git ignore rules
├── pyproject.toml # Project metadata and dependencies
├── pytest.ini # Pytest configuration
├── requirements.txt # Production dependencies
├── requirements-dev.txt # Development dependencies
└── README.md # This file
🔧 Configuration
The server can be configured using environment variables:
MCP_SERVER_NAME: Server name (default:mcp-server-poc)MCP_SERVER_VERSION: Server version (default:0.1.0)LOG_LEVEL: Logging level (default:INFO)ENABLE_METRICS: Enable metrics collection (default:true)
🧩 Technology Stack
- MCP SDK: Official Model Context Protocol SDK for Python
- Pydantic: Data validation and settings management
- httpx: Modern async HTTP client
- aiofiles: Async file operations
- uvloop: High-performance event loop
- pytest: Testing framework
- python-dotenv: Environment variable management
🔍 Development
Code Formatting
# Format code with black
black src/ tests/ examples/
# Lint with ruff
ruff check src/ tests/
# Type checking with mypy
mypy src/
Adding New Tools
- Add tool definition in
list_tools()function - Implement tool logic in
call_tool()function - Add tests in
tests/test_server.py
Example:
# In list_tools()
Tool(
name="my_new_tool",
description="Description of my tool",
inputSchema={
"type": "object",
"properties": {
"param": {"type": "string"}
},
"required": ["param"]
}
)
# In call_tool()
elif name == "my_new_tool":
param = arguments.get("param")
# Your tool logic here
return [TextContent(type="text", text=f"Result: {result}")]
🐛 Troubleshooting
Common Issues
-
Import Errors: Ensure all dependencies are installed
pip install -r requirements.txt -
Python Version: Ensure Python 3.10+ is being used
python --version -
Virtual Environment: Make sure virtual environment is activated
source venv/bin/activate -
Permission Errors: Check file permissions for write operations
📝 License
See LICENSE file for details.
🤝 Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
📚 Additional Resources
🎉 Next Steps
- Add more sophisticated tools (database queries, API integrations)
- Implement authentication and authorization
- Add metrics and monitoring
- Support for streaming responses
- WebSocket transport support
- Resource caching and optimization
Note: This is a POC project. For production use, consider adding:
- Proper error handling and logging
- Security measures (authentication, input validation)
- Rate limiting
- Comprehensive monitoring
- Documentation generation
- CI/CD pipelines
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.