
mcp-server-pacman
mcp-server-pacman
Tools
search_package
Search for packages in package indices (PyPI, npm, crates.io, Terraform Registry)
package_info
Get detailed information about a specific package
search_docker_image
Search for Docker images in Docker Hub
docker_image_info
Get detailed information about a specific Docker image
terraform_module_latest_version
Get the latest version of a Terraform module
README
Pacman MCP Server
A Model Context Protocol server that provides package index querying capabilities. This server enables LLMs to search and retrieve information from package repositories like PyPI, npm, crates.io, Docker Hub, and Terraform Registry.
<a href="https://glama.ai/mcp/servers/@oborchers/mcp-server-pacman"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@oborchers/mcp-server-pacman/badge" alt="mcp-server-pacman MCP server" /> </a>
Available Tools
-
search_package
- Search for packages in package indicesindex
(string, required): Package index to search ("pypi", "npm", "crates", "terraform")query
(string, required): Package name or search querylimit
(integer, optional): Maximum number of results to return (default: 5, max: 50)
-
package_info
- Get detailed information about a specific packageindex
(string, required): Package index to query ("pypi", "npm", "crates", "terraform")name
(string, required): Package nameversion
(string, optional): Specific version to get info for (default: latest)
-
search_docker_image
- Search for Docker images in Docker Hubquery
(string, required): Image name or search querylimit
(integer, optional): Maximum number of results to return (default: 5, max: 50)
-
docker_image_info
- Get detailed information about a specific Docker imagename
(string, required): Image name (e.g., user/repo or library/repo)tag
(string, optional): Specific image tag (default: latest)
-
terraform_module_latest_version
- Get the latest version of a Terraform modulename
(string, required): Module name (format: namespace/name/provider)
Prompts
-
search_pypi
- Search for Python packages on PyPI
- Arguments:
query
(string, required): Package name or search query
-
pypi_info
- Get information about a specific Python package
- Arguments:
name
(string, required): Package nameversion
(string, optional): Specific version
-
search_npm
- Search for JavaScript packages on npm
- Arguments:
query
(string, required): Package name or search query
-
npm_info
- Get information about a specific JavaScript package
- Arguments:
name
(string, required): Package nameversion
(string, optional): Specific version
-
search_crates
- Search for Rust packages on crates.io
- Arguments:
query
(string, required): Package name or search query
-
crates_info
- Get information about a specific Rust package
- Arguments:
name
(string, required): Package nameversion
(string, optional): Specific version
-
search_docker
- Search for Docker images on Docker Hub
- Arguments:
query
(string, required): Image name or search query
-
docker_info
- Get information about a specific Docker image
- Arguments:
name
(string, required): Image name (e.g., user/repo)tag
(string, optional): Specific tag
-
search_terraform
- Search for Terraform modules in the Terraform Registry
- Arguments:
query
(string, required): Module name or search query
-
terraform_info
- Get information about a specific Terraform module
- Arguments:
name
(string, required): Module name (format: namespace/name/provider)
-
terraform_latest_version
- Get the latest version of a specific Terraform module
- Arguments:
name
(string, required): Module name (format: namespace/name/provider)
Installation
Using uv (recommended)
When using uv
no specific installation is needed. We will
use uvx
to directly run mcp-server-pacman.
Using PIP
Alternatively you can install mcp-server-pacman
via pip:
pip install mcp-server-pacman
After installation, you can run it as a script using:
python -m mcp_server_pacman
Using Docker
You can also use the Docker image:
docker pull oborchers/mcp-server-pacman:latest
docker run -i --rm oborchers/mcp-server-pacman
Configuration
Configure for Claude.app
Add to your Claude settings:
<details> <summary>Using uvx</summary>
"mcpServers": {
"pacman": {
"command": "uvx",
"args": ["mcp-server-pacman"]
}
}
</details>
<details> <summary>Using docker</summary>
"mcpServers": {
"pacman": {
"command": "docker",
"args": ["run", "-i", "--rm", "oborchers/mcp-server-pacman:latest"]
}
}
</details>
<details> <summary>Using pip installation</summary>
"mcpServers": {
"pacman": {
"command": "python",
"args": ["-m", "mcp-server-pacman"]
}
}
</details>
Configure for VS Code
For manual installation, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P
and typing Preferences: Open User Settings (JSON)
.
Optionally, you can add it to a file called .vscode/mcp.json
in your workspace. This will allow you to share the configuration with others.
Note that the
mcp
key is needed when using themcp.json
file.
<details> <summary>Using uvx</summary>
{
"mcp": {
"servers": {
"pacman": {
"command": "uvx",
"args": ["mcp-server-pacman"]
}
}
}
}
</details>
<details> <summary>Using Docker</summary>
{
"mcp": {
"servers": {
"pacman": {
"command": "docker",
"args": ["run", "-i", "--rm", "oborchers/mcp-server-pacman:latest"]
}
}
}
}
</details>
Customization - User-agent
By default, the server will use the user-agent:
ModelContextProtocol/1.0 Pacman (+https://github.com/modelcontextprotocol/servers)
This can be customized by adding the argument --user-agent=YourUserAgent
to the args
list in the configuration.
Development
Running Tests
-
Run all tests:
uv run pytest -xvs
-
Run specific test categories:
# Run all provider tests uv run pytest -xvs tests/providers/ # Run integration tests for a specific provider uv run pytest -xvs tests/integration/test_pypi_integration.py # Run specific test class uv run pytest -xvs tests/providers/test_npm.py::TestNPMFunctions # Run a specific test method uv run pytest -xvs tests/providers/test_pypi.py::TestPyPIFunctions::test_search_pypi_success
-
Check code style:
uv run ruff check . uv run ruff format --check .
-
Format code:
uv run ruff format .
Debugging
You can use the MCP inspector to debug the server. For uvx installations:
npx @modelcontextprotocol/inspector uvx mcp-server-pacman
Or if you've installed the package in a specific directory or are developing on it:
cd path/to/pacman
npx @modelcontextprotocol/inspector uv run mcp-server-pacman
Release Process
The project uses GitHub Actions for automated releases:
- Update the version in
pyproject.toml
- Create a new tag with
git tag vX.Y.Z
(e.g.,git tag v0.1.0
) - Push the tag with
git push --tags
This will automatically:
- Verify the version in
pyproject.toml
matches the tag - Run tests and lint checks
- Build and publish to PyPI
- Build and publish to Docker Hub as
oborchers/mcp-server-pacman:latest
andoborchers/mcp-server-pacman:X.Y.Z
Project Structure
The codebase is organized into the following structure:
src/mcp_server_pacman/
├── models/ # Data models/schemas
├── providers/ # Package registry API clients
│ ├── pypi.py # PyPI API functions
│ ├── npm.py # npm API functions
│ ├── crates.py # crates.io API functions
│ ├── dockerhub.py # Docker Hub API functions
│ └── terraform.py # Terraform Registry API functions
├── utils/ # Utilities and helpers
│ ├── cache.py # Caching functionality
│ ├── constants.py # Shared constants
│ └── parsers.py # HTML parsing utilities
├── __init__.py # Package initialization
├── __main__.py # Entry point
└── server.py # MCP server implementation
Tests follow a similar structure:
tests/
├── integration/ # Integration tests (real API calls)
├── models/ # Model validation tests
├── providers/ # Provider function tests
└── utils/ # Test utilities
Contributing
We encourage contributions to help expand and improve mcp-server-pacman. Whether you want to add new package indices, enhance existing functionality, or improve documentation, your input is valuable.
For examples of other MCP servers and implementation patterns, see: https://github.com/modelcontextprotocol/servers
Pull requests are welcome! Feel free to contribute new ideas, bug fixes, or enhancements to make mcp-server-pacman even more powerful and useful.
License
mcp-server-pacman is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.