mcp-server-pacman

mcp-server-pacman

mcp-server-pacman

Category
Visit Server

Tools

search_package

Search for packages in package indices (PyPI, npm, crates.io, Terraform Registry)

package_info

Get detailed information about a specific package

search_docker_image

Search for Docker images in Docker Hub

docker_image_info

Get detailed information about a specific Docker image

terraform_module_latest_version

Get the latest version of a Terraform module

README

Pacman Logo

Pacman MCP Server

A Model Context Protocol server that provides package index querying capabilities. This server enables LLMs to search and retrieve information from package repositories like PyPI, npm, crates.io, Docker Hub, and Terraform Registry.

<a href="https://glama.ai/mcp/servers/@oborchers/mcp-server-pacman"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@oborchers/mcp-server-pacman/badge" alt="mcp-server-pacman MCP server" /> </a>

Available Tools

  • search_package - Search for packages in package indices

    • index (string, required): Package index to search ("pypi", "npm", "crates", "terraform")
    • query (string, required): Package name or search query
    • limit (integer, optional): Maximum number of results to return (default: 5, max: 50)
  • package_info - Get detailed information about a specific package

    • index (string, required): Package index to query ("pypi", "npm", "crates", "terraform")
    • name (string, required): Package name
    • version (string, optional): Specific version to get info for (default: latest)
  • search_docker_image - Search for Docker images in Docker Hub

    • query (string, required): Image name or search query
    • limit (integer, optional): Maximum number of results to return (default: 5, max: 50)
  • docker_image_info - Get detailed information about a specific Docker image

    • name (string, required): Image name (e.g., user/repo or library/repo)
    • tag (string, optional): Specific image tag (default: latest)
  • terraform_module_latest_version - Get the latest version of a Terraform module

    • name (string, required): Module name (format: namespace/name/provider)

Prompts

  • search_pypi

    • Search for Python packages on PyPI
    • Arguments:
      • query (string, required): Package name or search query
  • pypi_info

    • Get information about a specific Python package
    • Arguments:
      • name (string, required): Package name
      • version (string, optional): Specific version
  • search_npm

    • Search for JavaScript packages on npm
    • Arguments:
      • query (string, required): Package name or search query
  • npm_info

    • Get information about a specific JavaScript package
    • Arguments:
      • name (string, required): Package name
      • version (string, optional): Specific version
  • search_crates

    • Search for Rust packages on crates.io
    • Arguments:
      • query (string, required): Package name or search query
  • crates_info

    • Get information about a specific Rust package
    • Arguments:
      • name (string, required): Package name
      • version (string, optional): Specific version
  • search_docker

    • Search for Docker images on Docker Hub
    • Arguments:
      • query (string, required): Image name or search query
  • docker_info

    • Get information about a specific Docker image
    • Arguments:
      • name (string, required): Image name (e.g., user/repo)
      • tag (string, optional): Specific tag
  • search_terraform

    • Search for Terraform modules in the Terraform Registry
    • Arguments:
      • query (string, required): Module name or search query
  • terraform_info

    • Get information about a specific Terraform module
    • Arguments:
      • name (string, required): Module name (format: namespace/name/provider)
  • terraform_latest_version

    • Get the latest version of a specific Terraform module
    • Arguments:
      • name (string, required): Module name (format: namespace/name/provider)

Installation

Using uv (recommended)

When using uv no specific installation is needed. We will use uvx to directly run mcp-server-pacman.

Using PIP

Alternatively you can install mcp-server-pacman via pip:

pip install mcp-server-pacman

After installation, you can run it as a script using:

python -m mcp_server_pacman

Using Docker

You can also use the Docker image:

docker pull oborchers/mcp-server-pacman:latest
docker run -i --rm oborchers/mcp-server-pacman

Configuration

Configure for Claude.app

Add to your Claude settings:

<details> <summary>Using uvx</summary>

"mcpServers": {
  "pacman": {
    "command": "uvx",
    "args": ["mcp-server-pacman"]
  }
}

</details>

<details> <summary>Using docker</summary>

"mcpServers": {
  "pacman": {
    "command": "docker",
    "args": ["run", "-i", "--rm", "oborchers/mcp-server-pacman:latest"]
  }
}

</details>

<details> <summary>Using pip installation</summary>

"mcpServers": {
  "pacman": {
    "command": "python",
    "args": ["-m", "mcp-server-pacman"]
  }
}

</details>

Configure for VS Code

For manual installation, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P and typing Preferences: Open User Settings (JSON).

Optionally, you can add it to a file called .vscode/mcp.json in your workspace. This will allow you to share the configuration with others.

Note that the mcp key is needed when using the mcp.json file.

<details> <summary>Using uvx</summary>

{
  "mcp": {
    "servers": {
      "pacman": {
        "command": "uvx",
        "args": ["mcp-server-pacman"]
      }
    }
  }
}

</details>

<details> <summary>Using Docker</summary>

{
  "mcp": {
    "servers": {
      "pacman": {
        "command": "docker",
        "args": ["run", "-i", "--rm", "oborchers/mcp-server-pacman:latest"]
      }
    }
  }
}

</details>

Customization - User-agent

By default, the server will use the user-agent:

ModelContextProtocol/1.0 Pacman (+https://github.com/modelcontextprotocol/servers)

This can be customized by adding the argument --user-agent=YourUserAgent to the args list in the configuration.

Development

Running Tests

  • Run all tests:

    uv run pytest -xvs
    
  • Run specific test categories:

    # Run all provider tests
    uv run pytest -xvs tests/providers/
    
    # Run integration tests for a specific provider
    uv run pytest -xvs tests/integration/test_pypi_integration.py
    
    # Run specific test class
    uv run pytest -xvs tests/providers/test_npm.py::TestNPMFunctions
    
    # Run a specific test method
    uv run pytest -xvs tests/providers/test_pypi.py::TestPyPIFunctions::test_search_pypi_success
    
  • Check code style:

    uv run ruff check .
    uv run ruff format --check .
    
  • Format code:

    uv run ruff format .
    

Debugging

You can use the MCP inspector to debug the server. For uvx installations:

npx @modelcontextprotocol/inspector uvx mcp-server-pacman

Or if you've installed the package in a specific directory or are developing on it:

cd path/to/pacman
npx @modelcontextprotocol/inspector uv run mcp-server-pacman

Release Process

The project uses GitHub Actions for automated releases:

  1. Update the version in pyproject.toml
  2. Create a new tag with git tag vX.Y.Z (e.g., git tag v0.1.0)
  3. Push the tag with git push --tags

This will automatically:

  • Verify the version in pyproject.toml matches the tag
  • Run tests and lint checks
  • Build and publish to PyPI
  • Build and publish to Docker Hub as oborchers/mcp-server-pacman:latest and oborchers/mcp-server-pacman:X.Y.Z

Project Structure

The codebase is organized into the following structure:

src/mcp_server_pacman/
├── models/             # Data models/schemas
├── providers/          # Package registry API clients
│   ├── pypi.py         # PyPI API functions
│   ├── npm.py          # npm API functions
│   ├── crates.py       # crates.io API functions
│   ├── dockerhub.py    # Docker Hub API functions
│   └── terraform.py    # Terraform Registry API functions
├── utils/              # Utilities and helpers
│   ├── cache.py        # Caching functionality
│   ├── constants.py    # Shared constants
│   └── parsers.py      # HTML parsing utilities
├── __init__.py         # Package initialization
├── __main__.py         # Entry point
└── server.py           # MCP server implementation

Tests follow a similar structure:

tests/
├── integration/        # Integration tests (real API calls)
├── models/             # Model validation tests
├── providers/          # Provider function tests
└── utils/              # Test utilities

Contributing

We encourage contributions to help expand and improve mcp-server-pacman. Whether you want to add new package indices, enhance existing functionality, or improve documentation, your input is valuable.

For examples of other MCP servers and implementation patterns, see: https://github.com/modelcontextprotocol/servers

Pull requests are welcome! Feel free to contribute new ideas, bug fixes, or enhancements to make mcp-server-pacman even more powerful and useful.

License

mcp-server-pacman is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured