MCP Server ODBC via SQLAlchemy
Provides SQLAlchemy (via pyodbc) connectivity to any Database Management System (DBMS) that's accessible via SQLAlchemy.
OpenLinkSoftware
Tools
podbc_get_schemas
Retrieve and return a list of all schema names from the connected database.
podbc_get_tables
Retrieve and return a list containing information about tables in specified schema, if empty uses connection default
podbc_describe_table
Retrieve and return a dictionary containing the definition of a table, including column names, data types, nullable, autoincrement, primary key, and foreign keys.
podbc_filter_table_names
Retrieve and return a list containing information about tables whose names contain the substring 'q' in the format [{'schema': 'schema_name', 'table': 'table_name'}, {'schema': 'schema_name', 'table': 'table_name'}].
podbc_execute_query
Execute a SQL query and return results in JSONL format.
podbc_execute_query_md
Execute a SQL query and return results in Markdown table format.
podbc_query_database
Execute a SQL query and return results in JSONL format.
podbc_spasql_query
Execute a SPASQL query and return results.
podbc_sparql_query
Execute a SPARQL query and return results.
podbc_virtuoso_support_ai
Tool to use the Virtuoso AI support function
podbc_sparql_func
Call ???.
README
MCP Server ODBC via SQLAlchemy
A lightweight MCP (Model Context Protocol) server for ODBC built with FastAPI, pyodbc, and SQLAlchemy. This server is compatible with Virtuoso DBMS and other DBMS backends that implement a SQLAlchemy provider.
Features
- Get Schemas: Fetch and list all schema names from the connected database.
- Get Tables: Retrieve table information for specific schemas or all schemas.
- Describe Table: Generate a detailed description of table structures, including:
- Column names and data types
- Nullable attributes
- Primary and foreign keys
- Search Tables: Filter and retrieve tables based on name substrings.
- Execute Stored Procedures: In the case of Virtuoso, execute stored procedures and retrieve results.
- Execute Queries:
- JSONL result format: Optimized for structured responses.
- Markdown table format: Ideal for reporting and visualization.
Prerequisites
-
Install uv:
pip install uv
Or use Homebrew:
brew install uv
-
unixODBC Runtime Environment Checks:
-
Check installation configuration (i.e., location of key INI files) by running:
odbcinst -j
-
List available data source names by running:
odbcinst -q -s
-
ODBC DSN Setup: Configure your ODBC Data Source Name (
~/.odbc.ini
) for the target database. Example for Virtuoso DBMS:[VOS] Description = OpenLink Virtuoso Driver = /path/to/virtodbcu_r.so Database = Demo Address = localhost:1111 WideAsUTF16 = Yes
-
SQLAlchemy URL Binding: Use the format:
virtuoso+pyodbc://user:password@VOS
Installation
Clone this repository:
git clone https://github.com/OpenLinkSoftware/mcp-sqlalchemy-server.git
cd mcp-sqlalchemy-server
Environment Variables
Update your .env
by overriding the defaults to match your preferences
ODBC_DSN=VOS
ODBC_USER=dba
ODBC_PASSWORD=dba
API_KEY=xxx
Configuration
For Claude Desktop users:
Add the following to claude_desktop_config.json
:
{
"mcpServers": {
"my_database": {
"command": "uv",
"args": ["--directory", "/path/to/mcp-sqlalchemy-server", "run", "mcp-sqlalchemy-server"],
"env": {
"ODBC_DSN": "dsn_name",
"ODBC_USER": "username",
"ODBC_PASSWORD": "password",
"API_KEY": "sk-xxx"
}
}
}
}
Usage
Database Management System (DBMS) Connection URLs
Here are the pyodbc URL examples for connecting to DBMS systems that have been tested using this mcp-server.
Database | URL Format |
---|---|
Virtuoso DBMS | virtuoso+pyodbc://user:password@ODBC_DSN |
PostgreSQL | postgresql://user:password@localhost/dbname |
MySQL | mysql+pymysql://user:password@localhost/dbname |
SQLite | sqlite:///path/to/database.db |
Once connected, you can interact with your WhatsApp contacts through Claude, leveraging Claude's AI capabilities in your WhatsApp conversations. |
Tools Provided
Overview
name | description |
---|---|
podbc_get_schemas | List database schemas accessible to connected database management system (DBMS). |
podbc_get_tables | List tables associated with a selected database schema. |
podbc_describe_table | Provide the description of a table associated with a designated database schema. This includes information about column names, data types, nulls handling, autoincrement, primary key, and foreign keys |
podbc_filter_table_names | List tables, based on a substring pattern from the q input field, associated with a selected database schema. |
podbc_query_database | Execute a SQL query and return results in JSONL format. |
podbc_execute_query | Execute a SQL query and return results in JSONL format. |
podbc_execute_query_md | Execute a SQL query and return results in Markdown table format. |
podbc_spasql_query | Execute a SPASQL query and return results. |
podbc_sparql_query | Execute a SPARQL query and return results. |
podbc_virtuoso_support_ai | Interact with the Virtuoso Support Assistant/Agent -- a Virtuoso-specific feature for interacting with LLMs |
Detailed Description
-
podbc_get_schemas
- Retrieve and return a list of all schema names from the connected database.
- Input parameters:
user
(string, optional): Database username. Defaults to "demo".password
(string, optional): Database password. Defaults to "demo".dsn
(string, optional): ODBC data source name. Defaults to "Local Virtuoso".
- Returns a JSON string array of schema names.
-
podbc_get_tables
- Retrieve and return a list containing information about tables in a specified schema. If no schema is provided, uses the connection's default schema.
- Input parameters:
schema
(string, optional): Database schema to filter tables. Defaults to connection default.user
(string, optional): Database username. Defaults to "demo".password
(string, optional): Database password. Defaults to "demo".dsn
(string, optional): ODBC data source name. Defaults to "Local Virtuoso".
- Returns a JSON string containing table information (e.g., TABLE_CAT, TABLE_SCHEM, TABLE_NAME, TABLE_TYPE).
-
podbc_filter_table_names
- Filters and returns information about tables whose names contain a specific substring.
- Input parameters:
q
(string, required): The substring to search for within table names.schema
(string, optional): Database schema to filter tables. Defaults to connection default.user
(string, optional): Database username. Defaults to "demo".password
(string, optional): Database password. Defaults to "demo".dsn
(string, optional): ODBC data source name. Defaults to "Local Virtuoso".
- Returns a JSON string containing information for matching tables.
-
podbc_describe_table
- Retrieve and return detailed information about the columns of a specific table.
- Input parameters:
schema
(string, required): The database schema name containing the table.table
(string, required): The name of the table to describe.user
(string, optional): Database username. Defaults to "demo".password
(string, optional): Database password. Defaults to "demo".dsn
(string, optional): ODBC data source name. Defaults to "Local Virtuoso".
- Returns a JSON string describing the table's columns (e.g., COLUMN_NAME, TYPE_NAME, COLUMN_SIZE, IS_NULLABLE).
-
podbc_query_database
- Execute a standard SQL query and return the results in JSON format.
- Input parameters:
query
(string, required): The SQL query string to execute.user
(string, optional): Database username. Defaults to "demo".password
(string, optional): Database password. Defaults to "demo".dsn
(string, optional): ODBC data source name. Defaults to "Local Virtuoso".
- Returns query results as a JSON string.
-
podbc_query_database_md
- Execute a standard SQL query and return the results formatted as a Markdown table.
- Input parameters:
query
(string, required): The SQL query string to execute.user
(string, optional): Database username. Defaults to "demo".password
(string, optional): Database password. Defaults to "demo".dsn
(string, optional): ODBC data source name. Defaults to "Local Virtuoso".
- Returns query results as a Markdown table string.
-
podbc_query_database_jsonl
- Execute a standard SQL query and return the results in JSON Lines (JSONL) format (one JSON object per line).
- Input parameters:
query
(string, required): The SQL query string to execute.user
(string, optional): Database username. Defaults to "demo".password
(string, optional): Database password. Defaults to "demo".dsn
(string, optional): ODBC data source name. Defaults to "Local Virtuoso".
- Returns query results as a JSONL string.
-
podbc_spasql_query
- Execute a SPASQL (SQL/SPARQL hybrid) query return results. This is a Virtuoso-specific feature.
- Input parameters:
query
(string, required): The SPASQL query string.max_rows
(number, optional): Maximum number of rows to return. Defaults to 20.timeout
(number, optional): Query timeout in milliseconds. Defaults to 30000.user
(string, optional): Database username. Defaults to "demo".password
(string, optional): Database password. Defaults to "demo".dsn
(string, optional): ODBC data source name. Defaults to "Local Virtuoso".
- Returns the result from the underlying stored procedure call (e.g.,
Demo.demo.execute_spasql_query
).
-
podbc_sparql_query
- Execute a SPARQL query and return results. This is a Virtuoso-specific feature.
- Input parameters:
query
(string, required): The SPARQL query string.format
(string, optional): Desired result format. Defaults to 'json'.timeout
(number, optional): Query timeout in milliseconds. Defaults to 30000.user
(string, optional): Database username. Defaults to "demo".password
(string, optional): Database password. Defaults to "demo".dsn
(string, optional): ODBC data source name. Defaults to "Local Virtuoso".
- Returns the result from the underlying function call (e.g.,
"UB".dba."sparqlQuery"
).
-
podbc_virtuoso_support_ai
- Utilizes a Virtuoso-specific AI Assistant function, passing a prompt and optional API key. This is a Virtuoso-specific feature.
- Input parameters:
prompt
(string, required): The prompt text for the AI function.api_key
(string, optional): API key for the AI service. Defaults to "none".user
(string, optional): Database username. Defaults to "demo".password
(string, optional): Database password. Defaults to "demo".dsn
(string, optional): ODBC data source name. Defaults to "Local Virtuoso".
- Returns the result from the AI Support Assistant function call (e.g.,
DEMO.DBA.OAI_VIRTUOSO_SUPPORT_AI
).
Troubleshooting
For easier troubleshooting:
-
Install the MCP Inspector:
npm install -g @modelcontextprotocol/inspector
-
Start the inspector:
npx @modelcontextprotocol/inspector uv --directory /path/to/mcp-sqlalchemy-server run mcp-sqlalchemy-server
Access the provided URL to troubleshoot server interactions.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
MCP Package Docs Server
Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.
Claude Code MCP
An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.
@kazuph/mcp-taskmanager
Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.
Linear MCP Server
Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.
mermaid-mcp-server
A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.
Jira-Context-MCP
MCP server to provide Jira Tickets information to AI coding agents like Cursor

Linear MCP Server
A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.