
MCP Server Gemini
A Model Context Protocol server that enables Claude Desktop and other MCP-compatible clients to leverage Google's Gemini AI models with features like thinking models, Google Search grounding, JSON mode, and vision support.
README
🤖 MCP Server Gemini
A state-of-the-art Model Context Protocol (MCP) server that provides seamless integration with Google's Gemini AI models. This server enables Claude Desktop and other MCP-compatible clients to leverage the full power of Gemini's advanced AI capabilities.
✨ Features
🧠 Latest Gemini Models
- Gemini 2.5 Pro - Most capable thinking model for complex reasoning
- Gemini 2.5 Flash - Fast thinking model with best price/performance
- Gemini 2.0 Series - Latest generation models with advanced features
- Gemini 1.5 Series - Proven, reliable models for production use
🚀 Advanced Capabilities
- 🧠 Thinking Models - Gemini 2.5 series with step-by-step reasoning
- 🔍 Google Search Grounding - Real-time web information integration
- 📊 JSON Mode - Structured output with schema validation
- 🎯 System Instructions - Behavior customization and control
- 👁️ Vision Support - Image analysis and multimodal capabilities
- 💬 Conversation Memory - Context preservation across interactions
🛠️ Production Ready
- TypeScript - Full type safety and modern development
- Comprehensive Error Handling - Robust error management and recovery
- Rate Limiting - Built-in protection against API abuse
- Detailed Logging - Comprehensive monitoring and debugging
- Input Validation - Secure parameter validation with Zod
- Retry Logic - Automatic retry with exponential backoff
🚀 Quick Start
Prerequisites
- Node.js 16+ (Download)
- Google AI Studio API Key (Get one here)
Installation
Option 1: Global Installation (Recommended)
npm install -g mcp-server-gemini
Option 2: Local Development
git clone https://github.com/gurr-i/mcp-server-gemini-pro.git
cd mcp-server-gemini-pro
npm install
npm run build
Configuration
1. Set up your API key
Option A: Environment Variable
export GEMINI_API_KEY="your_api_key_here"
Option B: .env file
echo "GEMINI_API_KEY=your_api_key_here" > .env
2. Configure Claude Desktop
Add to your claude_desktop_config.json
:
For Global Installation:
{
"mcpServers": {
"gemini": {
"command": "mcp-server-gemini",
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
For Local Installation:
{
"mcpServers": {
"gemini": {
"command": "node",
"args": ["/path/to/mcp-server-gemini-pro/dist/enhanced-stdio-server.js"],
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
3. Restart Claude Desktop
Close and restart Claude Desktop completely for changes to take effect.
💡 Usage Examples
Once configured, you can use Gemini through Claude Desktop with natural language:
Basic Text Generation
"Use Gemini to explain quantum computing in simple terms"
"Generate a creative story about AI using Gemini 2.5 Pro"
Advanced Features
"Use Gemini with JSON mode to extract key points from this text"
"Use Gemini with grounding to get the latest news about AI"
"Generate a Python function using Gemini's thinking capabilities"
Image Analysis
"Analyze this image with Gemini" (attach image)
"What's in this screenshot using Gemini vision?"
Development Tasks
"Use Gemini to review this code and suggest improvements"
"Generate comprehensive tests for this function using Gemini"
⚙️ Configuration
Environment Variables
The server can be configured using environment variables or a .env
file:
Required Configuration
# Google AI Studio API Key (required)
GEMINI_API_KEY=your_api_key_here
Optional Configuration
# Logging level (default: info)
# Options: error, warn, info, debug
LOG_LEVEL=info
# Enable performance metrics (default: false)
ENABLE_METRICS=false
# Rate limiting configuration
RATE_LIMIT_ENABLED=true # Enable/disable rate limiting (default: true)
RATE_LIMIT_REQUESTS=100 # Max requests per window (default: 100)
RATE_LIMIT_WINDOW=60000 # Time window in ms (default: 60000 = 1 minute)
# Request timeout in milliseconds (default: 30000 = 30 seconds)
REQUEST_TIMEOUT=30000
# Environment mode (default: production)
NODE_ENV=production
Environment Setup
Development Environment
# .env for development
GEMINI_API_KEY=your_api_key_here
NODE_ENV=development
LOG_LEVEL=debug
RATE_LIMIT_ENABLED=false
REQUEST_TIMEOUT=60000
Production Environment
# .env for production
GEMINI_API_KEY=your_api_key_here
NODE_ENV=production
LOG_LEVEL=warn
RATE_LIMIT_ENABLED=true
RATE_LIMIT_REQUESTS=100
RATE_LIMIT_WINDOW=60000
REQUEST_TIMEOUT=30000
ENABLE_METRICS=true
Claude Desktop Configuration
Configuration File Locations
OS | Path |
---|---|
macOS | ~/Library/Application Support/Claude/claude_desktop_config.json |
Windows | %APPDATA%\Claude\claude_desktop_config.json |
Linux | ~/.config/Claude/claude_desktop_config.json |
Basic Configuration
{
"mcpServers": {
"gemini": {
"command": "mcp-server-gemini",
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
Advanced Configuration
{
"mcpServers": {
"gemini": {
"command": "mcp-server-gemini",
"env": {
"GEMINI_API_KEY": "your_api_key_here",
"LOG_LEVEL": "info",
"RATE_LIMIT_REQUESTS": "200",
"REQUEST_TIMEOUT": "45000"
}
}
}
}
Local Development Configuration
{
"mcpServers": {
"gemini": {
"command": "node",
"args": ["/path/to/mcp-server-gemini-pro/dist/enhanced-stdio-server.js"],
"cwd": "/path/to/mcp-server-gemini-pro",
"env": {
"GEMINI_API_KEY": "your_api_key_here",
"NODE_ENV": "development",
"LOG_LEVEL": "debug"
}
}
}
}
🛠️ Available Tools
Tool | Description | Key Features |
---|---|---|
generate_text | Generate text with advanced features | Thinking models, JSON mode, grounding |
analyze_image | Analyze images using vision models | Multi-modal understanding, detailed analysis |
count_tokens | Count tokens for cost estimation | Accurate token counting for all models |
list_models | List all available Gemini models | Real-time model availability and features |
embed_text | Generate text embeddings | High-quality vector representations |
get_help | Get usage help and documentation | Self-documenting with examples |
📊 Model Comparison
Model | Context Window | Features | Best For | Speed |
---|---|---|---|---|
gemini-2.5-pro | 2M tokens | Thinking, JSON, Grounding | Complex reasoning, coding | Slower |
gemini-2.5-flash ⭐ | 1M tokens | Thinking, JSON, Grounding | General purpose | Fast |
gemini-2.5-flash-lite | 1M tokens | Thinking, JSON | High-throughput tasks | Fastest |
gemini-2.0-flash | 1M tokens | JSON, Grounding | Standard tasks | Fast |
gemini-2.0-flash-lite | 1M tokens | JSON | Simple tasks | Fastest |
gemini-2.0-pro-experimental | 2M tokens | JSON, Grounding | Experimental features | Medium |
gemini-1.5-pro | 2M tokens | JSON | Legacy support | Medium |
gemini-1.5-flash | 1M tokens | JSON | Legacy support | Fast |
🔧 Development
Prerequisites
- Node.js 16+ (Download)
- npm 7+ (comes with Node.js)
- Git for version control
- Google AI Studio API Key (Get one here)
Setup
# Clone the repository
git clone https://github.com/gurr-i/mcp-server-gemini-pro.git
cd mcp-server-gemini-pro
# Install dependencies
npm install
# Set up environment variables
cp .env.example .env
# Edit .env and add your GEMINI_API_KEY
Available Scripts
Development
npm run dev # Start development server with hot reload
npm run dev:watch # Start with file watching (nodemon)
npm run build # Build for production
npm run build:watch # Build with watch mode
npm run clean # Clean build directory
Testing
npm test # Run all tests
npm run test:watch # Run tests in watch mode
npm run test:coverage # Run tests with coverage report
npm run test:integration # Run integration tests (requires API key)
Code Quality
npm run lint # Lint TypeScript code
npm run lint:fix # Fix linting issues automatically
npm run format # Format code with Prettier
npm run format:check # Check code formatting
npm run type-check # Run TypeScript type checking
npm run validate # Run all quality checks (lint + test + type-check)
Release & Distribution
npm run prepack # Prepare package for publishing
npm run release # Build, validate, and publish to npm
Project Structure
mcp-server-gemini/
├── src/ # Source code
│ ├── config/ # Configuration management
│ │ └── index.ts # Environment config with Zod validation
│ ├── utils/ # Utility modules
│ │ ├── logger.ts # Structured logging system
│ │ ├── errors.ts # Custom error classes & handling
│ │ ├── validation.ts # Input validation with Zod
│ │ └── rateLimiter.ts # Rate limiting implementation
│ ├── enhanced-stdio-server.ts # Main MCP server implementation
│ └── types.ts # TypeScript type definitions
├── tests/ # Test suite
│ ├── unit/ # Unit tests
│ │ ├── config.test.ts # Configuration tests
│ │ ├── validation.test.ts # Validation tests
│ │ └── errors.test.ts # Error handling tests
│ ├── integration/ # Integration tests
│ │ └── gemini-api.test.ts # Real API integration tests
│ └── setup.ts # Test setup and utilities
├── docs/ # Documentation
│ ├── api.md # API reference
│ ├── configuration.md # Configuration guide
│ └── troubleshooting.md # Troubleshooting guide
├── scripts/ # Build and utility scripts
│ ├── build.sh # Production build script
│ ├── dev.sh # Development script
│ └── test.sh # Test execution script
├── .github/workflows/ # GitHub Actions CI/CD
│ ├── ci.yml # Continuous integration
│ └── release.yml # Automated releases
├── dist/ # Built output (generated)
├── coverage/ # Test coverage reports (generated)
└── node_modules/ # Dependencies (generated)
🧪 Testing
Test Suite Overview
The project includes comprehensive testing with unit tests, integration tests, and code coverage reporting.
Running Tests
All Tests
npm test # Run all tests (unit tests only by default)
npm run test:watch # Run tests in watch mode for development
npm run test:coverage # Run tests with coverage report
Unit Tests
npm test -- --testPathPattern=unit # Run only unit tests
npm test -- --testNamePattern="config" # Run specific test suites
Integration Tests
Integration tests require a valid GEMINI_API_KEY
and make real API calls:
# Set API key and run integration tests
GEMINI_API_KEY=your_api_key_here npm run test:integration
# Or set in .env file and run
npm run test:integration
Test Coverage
npm run test:coverage # Generate coverage report
open coverage/lcov-report/index.html # View coverage report (macOS)
Test Structure
Unit Tests (tests/unit/
)
- Configuration Tests: Environment variable validation, config loading
- Validation Tests: Input validation, schema validation, sanitization
- Error Handling Tests: Custom error classes, error recovery, retry logic
- Utility Tests: Logger, rate limiter, helper functions
Integration Tests (tests/integration/
)
- Gemini API Tests: Real API calls to test connectivity and functionality
- Model Testing: Verify all supported models work correctly
- Feature Testing: JSON mode, grounding, embeddings, token counting
Writing Tests
Test File Structure
// tests/unit/example.test.ts
import { describe, it, expect, beforeEach, afterEach } from '@jest/globals';
import { YourModule } from '../../src/your-module.js';
describe('YourModule', () => {
beforeEach(() => {
// Setup before each test
});
afterEach(() => {
// Cleanup after each test
});
it('should do something', () => {
// Test implementation
expect(result).toBe(expected);
});
});
Custom Matchers
The test suite includes custom Jest matchers:
expect(response).toBeValidMCPResponse(); // Validates MCP response format
Test Configuration
Tests are configured in jest.config.js
with:
- TypeScript Support: Full ES modules and TypeScript compilation
- Coverage Thresholds: Minimum 70% coverage required
- Test Timeout: 30 seconds for integration tests
- Setup Files: Automatic test environment setup
🐳 Docker Deployment
Using Docker
Build and Run
# Build the Docker image
docker build -t mcp-server-gemini .
# Run the container
docker run -d \
--name mcp-server-gemini \
-e GEMINI_API_KEY=your_api_key_here \
-e LOG_LEVEL=info \
mcp-server-gemini
Using Docker Compose
# Create .env file with your API key
echo "GEMINI_API_KEY=your_api_key_here" > .env
# Start the service
docker-compose up -d
# View logs
docker-compose logs -f
# Stop the service
docker-compose down
Development with Docker
# Start development environment
docker-compose --profile dev up
# This mounts source code for live reloading
Environment-Specific Deployments
Production Deployment
# Production build
docker build --target production -t mcp-server-gemini:prod .
# Run with production settings
docker run -d \
--name mcp-server-gemini-prod \
--restart unless-stopped \
-e GEMINI_API_KEY=your_api_key_here \
-e NODE_ENV=production \
-e LOG_LEVEL=warn \
-e RATE_LIMIT_ENABLED=true \
-e ENABLE_METRICS=true \
mcp-server-gemini:prod
Health Checks
# Check container health
docker ps
docker logs mcp-server-gemini
# Manual health check
docker exec mcp-server-gemini node -e "console.log('Health check passed')"
🚀 Deployment Options
1. npm Global Installation
# Install globally
npm install -g mcp-server-gemini
# Run directly
GEMINI_API_KEY=your_key mcp-server-gemini
2. Local Installation
# Clone and build
git clone https://github.com/gurr-i/mcp-server-gemini-pro.git
cd mcp-server-gemini-pro
npm install
npm run build
# Run locally
GEMINI_API_KEY=your_key npm start
3. Docker Deployment
# Using Docker Hub (when published)
docker run -e GEMINI_API_KEY=your_key mcp-server-gemini-pro:latest
# Using local build
docker build -t mcp-server-gemini-pro .
docker run -e GEMINI_API_KEY=your_key mcp-server-gemini-pro
4. Process Manager (PM2)
# Install PM2
npm install -g pm2
# Create ecosystem file
cat > ecosystem.config.js << EOF
module.exports = {
apps: [{
name: 'mcp-server-gemini',
script: './dist/enhanced-stdio-server.js',
env: {
NODE_ENV: 'production',
GEMINI_API_KEY: 'your_api_key_here',
LOG_LEVEL: 'info'
}
}]
}
EOF
# Start with PM2
pm2 start ecosystem.config.js
pm2 save
pm2 startup
🔧 Troubleshooting
Common Issues
1. Server Won't Start
# Check if API key is set
echo $GEMINI_API_KEY
# Verify .env file exists and is readable
cat .env | grep GEMINI_API_KEY
# Check file permissions
ls -la .env
chmod 600 .env
2. API Key Issues
# Test API key manually
curl -H "Content-Type: application/json" \
-d '{"contents":[{"parts":[{"text":"Hello"}]}]}' \
-X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent?key=YOUR_API_KEY"
3. Claude Desktop Integration
# Verify config file location (macOS)
ls -la ~/Library/Application\ Support/Claude/claude_desktop_config.json
# Validate JSON syntax
cat claude_desktop_config.json | jq .
# Check server installation
which mcp-server-gemini
npm list -g mcp-server-gemini
4. Rate Limiting
# Temporarily disable rate limiting
export RATE_LIMIT_ENABLED=false
# Increase limits
export RATE_LIMIT_REQUESTS=1000
export RATE_LIMIT_WINDOW=60000
Debug Mode
# Enable debug logging
export LOG_LEVEL=debug
npm run dev
# Or for production
export LOG_LEVEL=debug
npm start
Getting Help
🔒 Security
API Key Security
- Never commit API keys to version control
- Use environment variables or secure secret management
- Rotate keys regularly for production use
- Use different keys for development and production
Rate Limiting
- Enable rate limiting in production (
RATE_LIMIT_ENABLED=true
) - Configure appropriate limits based on your usage patterns
- Monitor API usage to prevent quota exhaustion
Input Validation
- All inputs are automatically validated and sanitized
- XSS and injection protection built-in
- Schema validation for all tool parameters
Container Security
- Runs as non-root user in Docker
- Read-only filesystem with minimal privileges
- Security scanning in CI/CD pipeline
📚 Documentation
🤝 Contributing
We welcome contributions! Please see our Contributing Guide for details.
Development Workflow
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Run
npm run validate
- Submit a pull request
📄 License
MIT License - see LICENSE file for details.
🙏 Acknowledgments
- Google AI for the Gemini API
- Anthropic for the Model Context Protocol
- The open-source community for inspiration and feedback
📞 Support
<div align="center"> <strong>Made with ❤️ By Gurveer for the AI development community</strong> </div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.