
MCP Server for PostgreSQL
A Model Context Protocol server implementation that provides a simple interface to interact with PostgreSQL databases, enabling SQL queries, database operations, and schema management through MCP.
README
MCP Server for PostgreSQL
A Model Context Protocol (MCP) server implementation for PostgreSQL, providing a simple interface to interact with PostgreSQL databases through MCP.
Features
- Execute SQL queries with parameterized inputs
- Run INSERT/UPDATE/DELETE operations
- Create new databases
- Create or update table schemas
- Debug PostgreSQL connections
- Containerized with Docker for easy deployment
- Environment-based configuration
Prerequisites
- Python 3.8+
- PostgreSQL 10+
- Docker (optional, for containerized deployment)
- Docker Compose (optional, for development)
Installation
Using Docker (Recommended)
-
Clone the repository:
git clone https://github.com/asadudin/mcp-server-postgres.git cd mcp-server-postgres
-
Copy the example environment file:
cp .env.example .env
-
Update the
.env
file with your PostgreSQL credentials:PG_HOST=postgres PG_PORT=5432 PG_USER=postgres PG_PASSWORD=your_password PG_DATABASE=your_database HOST=0.0.0.0 PORT=8056
-
Start the service using Docker Compose:
docker-compose up -d
Manual Installation
-
Clone the repository:
git clone https://github.com/asadudin/mcp-server-postgres.git cd mcp-server-postgres
-
Create and activate a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: .\venv\Scripts\activate
-
Install dependencies:
pip install -r requirements.txt
-
Copy the example environment file and update it:
cp .env.example .env # Edit .env with your configuration
-
Run the server:
python mcp_server_postgres.py
Usage
The MCP server provides the following endpoints:
sql_query
Run a SELECT query and return results as JSON.
Parameters:
query
: SQL query stringparams
: Optional JSON string of query parameters (list or dict)
Example:
{
"query": "SELECT * FROM users WHERE id = $1",
"params": [1]
}
sql_execute
Execute an INSERT/UPDATE/DELETE statement.
Parameters:
query
: SQL statementparams
: Optional JSON string of query parameters (list or dict)
Example:
{
"query": "INSERT INTO users (name, email) VALUES ($1, $2)",
"params": ["John Doe", "john@example.com"]
}
create_database
Create a new PostgreSQL database.
Parameters:
database_name
: Name of the database to create
create_or_update_table
Create or update a table schema.
Parameters:
sql
: CREATE TABLE or ALTER TABLE SQL statement
debug_postgres_connection
Debug the PostgreSQL connection.
Environment Variables
Variable | Default | Description |
---|---|---|
PG_HOST | localhost | PostgreSQL host |
PG_PORT | 5432 | PostgreSQL port |
PG_USER | postgres | PostgreSQL username |
PG_PASSWORD | PostgreSQL password | |
PG_DATABASE | postgres | Default database name |
HOST | 0.0.0.0 | Host to bind the MCP server to |
PORT | 8056 | Port to run the MCP server on |
Development
Running Tests
# Install test dependencies
pip install -r requirements-dev.txt
# Run tests
pytest
Building the Docker Image
docker build -t mcp-server-postgres .
API Documentation
For detailed API documentation, refer to the OpenAPI specification.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.