MCP Server for Mem.ai
Enables AI assistants to intelligently save, organize, and retrieve content through Mem.ai's knowledge management platform. Supports creating notes, collections, and AI-powered content processing with automatic organization.
README
MCP Server for Mem.ai
A production-ready Model Context Protocol (MCP) server that provides AI assistants with intelligent access to Mem.ai's knowledge management platform.
✨ Features
- 🧠 Intelligent Memory: Save and process content with Mem It's AI-powered organization
- 📝 Note Management: Create, read, and delete structured markdown notes
- 📁 Collections: Organize notes into searchable collections
- 🔒 Type-Safe: Full type hints and Pydantic validation
- ⚡ Async/Await: High-performance async I/O throughout
- 🎯 Clean API: Simple, intuitive interface for AI assistants
- 🛡️ Production-Ready: Comprehensive error handling and logging
- 🧪 Well-Tested: Full test suite with pytest
📋 Prerequisites
- Python 3.10 or higher
- A Mem.ai account
- Mem.ai API key (get one here)
🚀 Quick Start
Installation
- Clone the repository:
git clone https://github.com/yourusername/mcp-mem.ai.git
cd mcp-mem.ai
- Install dependencies:
pip install -e .
- Set up your environment:
cp .env.example .env
# Edit .env and add your MEM_API_KEY
Running the Server
Local Development
fastmcp run src/mcp_mem/server.py
Using with Claude Desktop
Add to your Claude Desktop configuration (claude_desktop_config.json):
{
"mcpServers": {
"mem": {
"command": "python",
"args": ["-m", "mcp_mem.server"],
"env": {
"MEM_API_KEY": "your_api_key_here"
}
}
}
}
Using with Other MCP Clients
from mcp_mem import mcp
# Run the server
mcp.run()
🛠️ Available Tools
1. mem_it - Intelligent Content Processing
Save and automatically process any content type with AI-powered organization.
Parameters:
input(required): Content to save (text, HTML, markdown, etc.)instructions(optional): Processing instructionscontext(optional): Additional context for organizationtimestamp(optional): ISO 8601 timestamp
Example:
mem_it(
input="Just had a great meeting with the product team about Q1 roadmap...",
instructions="Extract key action items and decisions",
context="Product Planning"
)
2. create_note - Create Structured Note
Create a markdown-formatted note with explicit control over content and organization.
Parameters:
content(required): Markdown-formatted contentcollection_ids(optional): List of collection UUIDscollection_titles(optional): List of collection titles
Example:
create_note(
content="""# Team Standup - Jan 15, 2024
## Completed
- Feature X shipped to production
- Bug fixes for issue #123
## In Progress
- Working on Feature Y
- Code review for PR #456
## Blockers
- Waiting for API access
""",
collection_titles=["Team Meetings", "Engineering"]
)
3. read_note - Read Note
Retrieve a note's full content and metadata by ID.
Parameters:
note_id(required): UUID of the note
Example:
read_note("01961d40-7a67-7049-a8a6-d5638cbaaeb9")
4. delete_note - Delete Note
Permanently delete a note by ID.
Parameters:
note_id(required): UUID of the note
Example:
delete_note("01961d40-7a67-7049-a8a6-d5638cbaaeb9")
5. create_collection - Create Collection
Create a new collection to organize related notes.
Parameters:
title(required): Collection titledescription(optional): Markdown-formatted description
Example:
create_collection(
title="Project Apollo",
description="""# Project Apollo
All notes related to the Apollo project including:
- Meeting notes
- Technical specifications
- Customer feedback
"""
)
6. delete_collection - Delete Collection
Delete a collection (notes remain, just unassociated).
Parameters:
collection_id(required): UUID of the collection
Example:
delete_collection("5e29c8a2-c73b-476b-9311-e2579712d4b1")
⚙️ Configuration
Configuration is done via environment variables. Copy .env.example to .env and customize:
# Required: Your Mem.ai API key
MEM_API_KEY=your_api_key_here
# Optional: Custom API endpoint (default: https://api.mem.ai/v2)
MEM_API_BASE_URL=https://api.mem.ai/v2
# Optional: Request timeout in seconds (default: 30)
MEM_REQUEST_TIMEOUT=30
# Optional: Enable debug logging (default: false)
MEM_DEBUG=false
🏗️ Architecture
src/mcp_mem/
├── __init__.py # Package initialization
├── models.py # Pydantic data models
├── client.py # Mem.ai API client
└── server.py # MCP server implementation
Key Components
models.py: Pydantic models for request/response validationclient.py: Async HTTP client wrapper for Mem.ai APIserver.py: FastMCP server with tool implementations
🧪 Testing
Run the test suite:
# Install dev dependencies
pip install -e ".[dev]"
# Run all tests
pytest
# Run with coverage
pytest --cov=mcp_mem --cov-report=html
# Run specific test file
pytest tests/test_client.py
🔍 Error Handling
The server provides clear, actionable error messages:
MemAuthenticationError: Invalid or missing API keyMemNotFoundError: Resource (note/collection) not foundMemValidationError: Invalid request parametersMemAPIError: General API errors
All errors are logged and returned with helpful context to the AI assistant.
📚 Examples
See the examples/ directory for complete usage examples:
basic_usage.py: Simple examples of each tooladvanced_usage.py: Complex workflows and patterns
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🔗 Links
- Mem.ai - Intelligent memory platform
- Mem.ai API Documentation
- Model Context Protocol
- FastMCP - MCP server framework
💡 Use Cases
- Meeting Notes: Automatically process and organize meeting transcripts
- Research: Save and categorize research papers, articles, and findings
- Customer Feedback: Collect and organize customer conversations
- Knowledge Base: Build a searchable knowledge repository
- Personal Memory: Keep track of ideas, thoughts, and learnings
🐛 Troubleshooting
Authentication Error
MemAuthenticationError: MEM_API_KEY environment variable or api_key parameter is required
Solution: Set your MEM_API_KEY in the .env file or environment.
Connection Timeout
httpx.ReadTimeout: timeout
Solution: Increase MEM_REQUEST_TIMEOUT in your .env file.
Invalid UUID
MemValidationError: invalid UUID format
Solution: Ensure note/collection IDs are valid UUIDs from Mem.ai.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.