MCP Server for LimeSurvey

MCP Server for LimeSurvey

Enables interaction with LimeSurvey API to create and manage surveys, questions, question groups, activate surveys, and export responses through standardized MCP endpoints.

Category
Visit Server

README

MCP Server for LimeSurvey

This MCP server enables interaction with the LimeSurvey API while adhering to the Model Context Protocol specifications. It exposes core LimeSurvey functionality through standardized MCP endpoints.

Features

  • 🚀 Survey creation
  • ❓ Question and answer management
  • 📋 Question group handling
  • ✅ Survey activation
  • 📊 Response exporting
  • 🔍 List available surveys

Prerequisites

  • Python 3.7+
  • Access to a LimeSurvey instance (version 3.X+)
  • LimeSurvey admin account

Installation

  1. Clone the repository:
git clone https://gitlab.com/mehdi_guiraud/mcp-limesurvey.git
cd mcp-limesurvey
  1. Configure environment variables:
cp .env.example .env
# Edit .env with your LimeSurvey credentials
nano .env
  1. Install dependencies:
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

Starting the Server

./start_server.sh

The server will be available at http://localhost:8080

Integration with Claude Desktop

Step 1: Add the MCP Server in Claude Desktop

  1. Open Claude Desktop
  2. Navigate to SettingsModel Context Protocol
  3. Click Add Custom Server
  4. Provide server details:
    • Server Name: LimeSurvey MCP
    • Base URL: http://localhost:8080/mcp
    • Specification URL: http://localhost:8080/spec

Step 2: Usage with Claude Desktop

Interact with LimeSurvey directly from Claude Desktop using MCP syntax:

Create a new survey

{
  "model": "limesurvey",
  "action": "create_survey",
  "parameters": {
    "survey_title": "Customer Feedback",
    "survey_language": "en"
  }
}

Add a question

{
  "model": "limesurvey",
  "action": "add_question",
  "parameters": {
    "survey_id": 123456,
    "group_id": 1,
    "question_text": "How satisfied are you with our service?",
    "question_type": "5",
    "question_options": {
      "subquestions": ["Very satisfied", "Satisfied", "Neutral", "Unsatisfied", "Very unsatisfied"]
    }
  }
}

Activate a survey

{
  "model": "limesurvey",
  "action": "activate_survey",
  "parameters": {
    "survey_id": 123456
  }
}

Export responses

{
  "model": "limesurvey",
  "action": "export_responses",
  "parameters": {
    "survey_id": 123456,
    "format": "json"
  }
}

Available MCP Endpoints

Action Required Parameters Description
create_survey survey_title, survey_language Create a new survey
add_question survey_id, group_id, question_text, question_type Add a question to a survey
add_group survey_id, group_title, group_description Add a question group
activate_survey survey_id Activate a survey
list_surveys None List all surveys
export_responses survey_id Export survey responses

Technical Specification

The server fully implements the MCP specification (2025-06-18). Access the complete specification at:

GET http://localhost:8080/spec

Security

  1. Authentication: Uses credentials stored in .env
  2. Validation: All requests are validated against the MCP schema
  3. Session Management: Automatically caches and recycles LimeSurvey sessions

Customization

To add new API methods:

  1. Add the endpoint in config/config.yaml
  2. Implement the method in app/main.py
  3. Update documentation in the get_mcp_spec function

Troubleshooting

  • Ensure RPC API is enabled in LimeSurvey (Configuration → Interfaces → Enable RPC API)
  • Verify correct credentials in .env
  • Check server logs for detailed error messages

License

This project is licensed under MIT. See LICENSE for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured