MCP Server for LimeSurvey
Enables interaction with LimeSurvey API to create and manage surveys, questions, question groups, activate surveys, and export responses through standardized MCP endpoints.
README
MCP Server for LimeSurvey
This MCP server enables interaction with the LimeSurvey API while adhering to the Model Context Protocol specifications. It exposes core LimeSurvey functionality through standardized MCP endpoints.
Features
- 🚀 Survey creation
- ❓ Question and answer management
- 📋 Question group handling
- ✅ Survey activation
- 📊 Response exporting
- 🔍 List available surveys
Prerequisites
- Python 3.7+
- Access to a LimeSurvey instance (version 3.X+)
- LimeSurvey admin account
Installation
- Clone the repository:
git clone https://gitlab.com/mehdi_guiraud/mcp-limesurvey.git
cd mcp-limesurvey
- Configure environment variables:
cp .env.example .env
# Edit .env with your LimeSurvey credentials
nano .env
- Install dependencies:
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
Starting the Server
./start_server.sh
The server will be available at http://localhost:8080
Integration with Claude Desktop
Step 1: Add the MCP Server in Claude Desktop
- Open Claude Desktop
- Navigate to Settings → Model Context Protocol
- Click Add Custom Server
- Provide server details:
- Server Name: LimeSurvey MCP
- Base URL:
http://localhost:8080/mcp - Specification URL:
http://localhost:8080/spec
Step 2: Usage with Claude Desktop
Interact with LimeSurvey directly from Claude Desktop using MCP syntax:
Create a new survey
{
"model": "limesurvey",
"action": "create_survey",
"parameters": {
"survey_title": "Customer Feedback",
"survey_language": "en"
}
}
Add a question
{
"model": "limesurvey",
"action": "add_question",
"parameters": {
"survey_id": 123456,
"group_id": 1,
"question_text": "How satisfied are you with our service?",
"question_type": "5",
"question_options": {
"subquestions": ["Very satisfied", "Satisfied", "Neutral", "Unsatisfied", "Very unsatisfied"]
}
}
}
Activate a survey
{
"model": "limesurvey",
"action": "activate_survey",
"parameters": {
"survey_id": 123456
}
}
Export responses
{
"model": "limesurvey",
"action": "export_responses",
"parameters": {
"survey_id": 123456,
"format": "json"
}
}
Available MCP Endpoints
| Action | Required Parameters | Description |
|---|---|---|
create_survey |
survey_title, survey_language |
Create a new survey |
add_question |
survey_id, group_id, question_text, question_type |
Add a question to a survey |
add_group |
survey_id, group_title, group_description |
Add a question group |
activate_survey |
survey_id |
Activate a survey |
list_surveys |
None | List all surveys |
export_responses |
survey_id |
Export survey responses |
Technical Specification
The server fully implements the MCP specification (2025-06-18). Access the complete specification at:
GET http://localhost:8080/spec
Security
- Authentication: Uses credentials stored in
.env - Validation: All requests are validated against the MCP schema
- Session Management: Automatically caches and recycles LimeSurvey sessions
Customization
To add new API methods:
- Add the endpoint in
config/config.yaml - Implement the method in
app/main.py - Update documentation in the
get_mcp_specfunction
Troubleshooting
- Ensure RPC API is enabled in LimeSurvey (
Configuration → Interfaces → Enable RPC API) - Verify correct credentials in
.env - Check server logs for detailed error messages
License
This project is licensed under MIT. See LICENSE for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.