MCP Server for Apache Airflow

MCP Server for Apache Airflow

Provides a standardized way for MCP clients to interact with Apache Airflow's REST API, supporting operations like DAG management and monitoring Airflow system health.

yangkyeongmo

Monitoring
OS Automation
Visit Server

Tools

list_dags

Lists all DAGs in the Airflow instance

get_dag

Get details of a specific DAG

unpause_dag

Unpause a DAG

pause_dag

Pause a DAG

trigger_dag

Trigger a DAG run

get_dag_runs

Get DAG runs for a specific DAG

get_dag_tasks

Get tasks for a specific DAG

get_task_instance

Get details of a specific task instance

list_task_instances

List all task instances for a specific DAG run

get_import_error

Get details of a specific import error

list_import_errors

List all import errors

get_health

Get the health status of the Airflow instance

get_version

Get the version information of the Airflow instance

README

mcp-server-apache-airflow

smithery badge

A Model Context Protocol (MCP) server implementation for Apache Airflow, enabling seamless integration with MCP clients. This project provides a standardized way to interact with Apache Airflow through the Model Context Protocol.

<a href="https://glama.ai/mcp/servers/e99b6vx9lw"> <img width="380" height="200" src="https://glama.ai/mcp/servers/e99b6vx9lw/badge" alt="Server for Apache Airflow MCP server" /> </a>

About

This project implements a Model Context Protocol server that wraps Apache Airflow's REST API, allowing MCP clients to interact with Airflow in a standardized way. It uses the official Apache Airflow client library to ensure compatibility and maintainability.

Feature Implementation Status

Feature API Path Status
DAG Management
List DAGs /api/v1/dags
Get DAG Details /api/v1/dags/{dag_id}
Pause DAG /api/v1/dags/{dag_id}
Unpause DAG /api/v1/dags/{dag_id}
Update DAG /api/v1/dags/{dag_id}
Delete DAG /api/v1/dags/{dag_id}
Get DAG Source /api/v1/dagSources/{file_token}
Patch Multiple DAGs /api/v1/dags
Reparse DAG File /api/v1/dagSources/{file_token}/reparse
DAG Runs
List DAG Runs /api/v1/dags/{dag_id}/dagRuns
Create DAG Run /api/v1/dags/{dag_id}/dagRuns
Get DAG Run Details /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Update DAG Run /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Delete DAG Run /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Get DAG Runs Batch /api/v1/dags/~/dagRuns/list
Clear DAG Run /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/clear
Set DAG Run Note /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/setNote
Get Upstream Dataset Events /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/upstreamDatasetEvents
Tasks
List DAG Tasks /api/v1/dags/{dag_id}/tasks
Get Task Details /api/v1/dags/{dag_id}/tasks/{task_id}
Get Task Instance /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}
List Task Instances /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances
Update Task Instance /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}
Clear Task Instances /api/v1/dags/{dag_id}/clearTaskInstances
Set Task Instances State /api/v1/dags/{dag_id}/updateTaskInstancesState
Variables
List Variables /api/v1/variables
Create Variable /api/v1/variables
Get Variable /api/v1/variables/{variable_key}
Update Variable /api/v1/variables/{variable_key}
Delete Variable /api/v1/variables/{variable_key}
Connections
List Connections /api/v1/connections
Create Connection /api/v1/connections
Get Connection /api/v1/connections/{connection_id}
Update Connection /api/v1/connections/{connection_id}
Delete Connection /api/v1/connections/{connection_id}
Test Connection /api/v1/connections/test
Pools
List Pools /api/v1/pools
Create Pool /api/v1/pools
Get Pool /api/v1/pools/{pool_name}
Update Pool /api/v1/pools/{pool_name}
Delete Pool /api/v1/pools/{pool_name}
XComs
List XComs /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries
Get XCom Entry /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries/{xcom_key}
Datasets
List Datasets /api/v1/datasets
Get Dataset /api/v1/datasets/{uri}
Get Dataset Events /api/v1/datasetEvents
Create Dataset Event /api/v1/datasetEvents
Get DAG Dataset Queued Event /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri}
Get DAG Dataset Queued Events /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents
Delete DAG Dataset Queued Event /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri}
Delete DAG Dataset Queued Events /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents
Get Dataset Queued Events /api/v1/datasets/{uri}/dagRuns/queued/datasetEvents
Delete Dataset Queued Events /api/v1/datasets/{uri}/dagRuns/queued/datasetEvents
Monitoring
Get Health /api/v1/health
DAG Stats
Get DAG Stats /api/v1/dags/statistics
Config
Get Config /api/v1/config
Plugins
Get Plugins /api/v1/plugins
Providers
List Providers /api/v1/providers
Event Logs
List Event Logs /api/v1/eventLogs
Get Event Log /api/v1/eventLogs/{event_log_id}
System
Get Import Errors /api/v1/importErrors
Get Import Error Details /api/v1/importErrors/{import_error_id}
Get Health Status /api/v1/health
Get Version /api/v1/version

Setup

Dependencies

This project depends on the official Apache Airflow client library (apache-airflow-client). It will be automatically installed when you install this package.

Environment Variables

Set the following environment variables:

AIRFLOW_HOST=<your-airflow-host>
AIRFLOW_USERNAME=<your-airflow-username>
AIRFLOW_PASSWORD=<your-airflow-password>

Usage with Claude Desktop

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "mcp-server-apache-airflow": {
      "command": "uvx",
      "args": ["mcp-server-apache-airflow"],
      "env": {
        "AIRFLOW_HOST": "https://your-airflow-host",
        "AIRFLOW_USERNAME": "your-username",
        "AIRFLOW_PASSWORD": "your-password"
      }
    }
  }
}

Alternative configuration using uv:

{
  "mcpServers": {
    "mcp-server-apache-airflow": {
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/mcp-server-apache-airflow",
        "run",
        "mcp-server-apache-airflow"
      ],
      "env": {
        "AIRFLOW_HOST": "https://your-airflow-host",
        "AIRFLOW_USERNAME": "your-username",
        "AIRFLOW_PASSWORD": "your-password"
      }
    }
  }
}

Replace /path/to/mcp-server-apache-airflow with the actual path where you've cloned the repository.

Selecting the API groups

You can select the API groups you want to use by setting the --apis flag.

uv run mcp-server-apache-airflow --apis "dag,dagrun"

The default is to use all APIs.

Allowed values are:

  • config
  • connections
  • dag
  • dagrun
  • dagstats
  • dataset
  • eventlog
  • importerror
  • monitoring
  • plugin
  • pool
  • provider
  • taskinstance
  • variable
  • xcom

Manual Execution

You can also run the server manually:

make run

make run accepts following options:

Options:

  • --port: Port to listen on for SSE (default: 8000)
  • --transport: Transport type (stdio/sse, default: stdio)

Or, you could run the sse server directly, which accepts same parameters:

make run-sse

Installing via Smithery

To install Apache Airflow MCP Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @yangkyeongmo/mcp-server-apache-airflow --client claude

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

MIT License

Recommended Servers

Claude Code MCP

Claude Code MCP

An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.

Featured
Local
JavaScript
@kazuph/mcp-taskmanager

@kazuph/mcp-taskmanager

Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.

Featured
Local
JavaScript
Google Search Console MCP Server

Google Search Console MCP Server

A server that provides access to Google Search Console data through the Model Context Protocol, allowing users to retrieve and analyze search analytics data with customizable dimensions and reporting periods.

Featured
TypeScript
Jira-Context-MCP

Jira-Context-MCP

MCP server to provide Jira Tickets information to AI coding agents like Cursor

Featured
TypeScript
mixpanel

mixpanel

Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Featured
TypeScript
mcp-server-datadog

mcp-server-datadog

The MCP server provides an interface to the Datadog API, enabling seamless management of incidents, monitoring, logs, dashboards, metrics, traces, and hosts. Its extensible design allows easy integration of additional Datadog APIs for future expansions.

Featured
TypeScript
PostHog MCP Server

PostHog MCP Server

A Model Context Protocol server that enables Claude Desktop users to interact directly with PostHog, allowing them to view projects and create annotations through natural language commands.

Official
Local
Python
metoro-mcp-server

metoro-mcp-server

Query and interact with kubernetes environments monitored by Metoro. Look at APM, metrics, traces, profiling information with LLMs.

Official
Local
Go
Beamlit MCP Server

Beamlit MCP Server

An MCP server implementation that enables seamless integration between Beamlit CLI and AI models using the Model Context Protocol standard.

Official
TypeScript
Raygun MCP Server

Raygun MCP Server

MCP Server for Raygun's API V3 endpoints for interacting with your Crash Reporting and Real User Monitoring applications. This server provides comprehensive access to Raygun's API features through the Model Context Protocol.

Official
TypeScript