MCP Server for Agent8
A server implementing the Model Context Protocol (MCP) to support Agent8 SDK development by providing system prompts and code example search capabilities through stdio and SSE transports.
planetarium
README
MCP Server for Agent8
A server implementing the Model Context Protocol (MCP) to support Agent8 SDK development. Developed with TypeScript and pnpm, supporting stdio and SSE transports.
Features
This Agent8 MCP Server implements the following MCP specification capabilities:
Prompts
- System Prompt for Agent8 SDK: Provides optimized guidelines for Agent8 SDK development through the
system-prompt-for-agent8-sdk
prompt template.
Tools
- Code Examples Search: Retrieves relevant Agent8 game development code examples from a vector database using the
search_code_examples
tool. - Game Resource Search: Searches for game development assets (sprites, animations, sounds, etc.) using semantic similarity matching via the
search_game_resources
tool.
Installation
# Install dependencies
pnpm install
# Build
pnpm build
Using Docker
You can run this application using Docker in several ways:
Option 1: Pull from GitHub Container Registry (Recommended)
# Pull the latest image
docker pull ghcr.io/planetarium/mcp-agent8:latest
# Run the container
docker run -p 3333:3333 --env-file .env ghcr.io/planetarium/mcp-agent8:latest
Option 2: Build Locally
# Build the Docker image
docker build -t agent8-mcp-server .
# Run the container with environment variables
docker run -p 3333:3333 --env-file .env agent8-mcp-server
Docker Environment Configuration
There are three ways to configure environment variables when running with Docker:
-
Using
--env-file
(Recommended):# Create and configure your .env file first cp .env.example .env nano .env # Run with .env file docker run -p 3000:3000 --env-file .env agent8-mcp-server
-
Using individual
-e
flags:docker run -p 3000:3000 \ -e SUPABASE_URL=your_supabase_url \ -e SUPABASE_SERVICE_ROLE_KEY=your_service_role_key \ -e OPENAI_API_KEY=your_openai_api_key \ -e MCP_TRANSPORT=sse \ -e PORT=3000 \ -e LOG_LEVEL=info \ agent8-mcp-server
-
Using Docker Compose (for development/production setup):
The project includes a pre-configured
docker-compose.yml
file with:- Automatic port mapping from .env configuration
- Environment variables loading
- Volume mounting for data persistence
- Container auto-restart policy
- Health check configuration
To run the server:
docker compose up
To run in detached mode:
docker compose up -d
Required Environment Variables:
SUPABASE_URL
: Supabase URL for database connectionSUPABASE_SERVICE_ROLE_KEY
: Supabase service role key for authenticationOPENAI_API_KEY
: OpenAI API key for AI functionality
The Dockerfile uses a multi-stage build process to create a minimal production image:
- Uses Node.js 20 Alpine as the base image for smaller size
- Separates build and runtime dependencies
- Only includes necessary files in the final image
- Exposes port 3000 by default
Usage
Command Line Options
# View help
pnpm start --help
# View version information
pnpm start --version
Supported options:
--debug
: Enable debug mode--transport <type>
: Transport type (stdio or sse), default: stdio--port <number>
: Port to use for SSE transport, default: 3000--log-destination <dest>
: Log destination (stdout, stderr, file, none)--log-file <path>
: Path to log file (when log-destination is file)--log-level <level>
: Log level (debug, info, warn, error), default: info--env-file <path>
: Path to .env file
Using Environment Variables
The server supports configuration via environment variables, which can be set directly or via a .env
file.
- Create a
.env
file in the project root (see.env.example
for reference):
# Copy the example file
cp .env.example .env
# Edit the .env file with your settings
nano .env
- Run the server (it will automatically load the
.env
file):
pnpm start
- Or specify a custom path to the
.env
file:
pnpm start --env-file=/path/to/custom/.env
Configuration Priority
The server uses the following priority order when determining configuration values:
- Command line arguments (highest priority)
- Environment variables (from
.env
file or system environment) - Default values (lowest priority)
This allows you to set baseline configuration in your .env
file while overriding specific settings via command line arguments when needed.
Supported Environment Variables
Variable | Description | Default |
---|---|---|
MCP_TRANSPORT | Transport type (stdio or sse) | stdio |
PORT | Port to use for SSE transport | 3000 |
LOG_LEVEL | Log level (debug, info, warn, error) | info |
LOG_DESTINATION | Log destination (stdout, stderr, file, none) | stderr (for stdio transport), stdout (for sse transport) |
LOG_FILE | Path to log file (when LOG_DESTINATION is file) | (none) |
DEBUG | Enable debug mode (true/false) | false |
SUPABASE_URL | Supabase URL for database connection | (required) |
SUPABASE_SERVICE_ROLE_KEY | Supabase service role key for authentication | (required) |
OPENAI_API_KEY | OpenAI API key for AI functionality | (required) |
Using Stdio Transport
# Build and run
pnpm build
pnpm start --transport=stdio
Using SSE Transport
# Build and run (default port: 3000)
pnpm build
pnpm start --transport=sse --port=3000
Debug Mode
# Run in debug mode
pnpm start --debug
Available Prompts
systemprompt-agent8-sdk
Client Integration
Using with Claude Desktop
- Add the following to Claude Desktop configuration file (
claude_desktop_config.json
):
{
"mcpServers": {
"Agent8": {
"command": "npx",
"args": ["--yes", "agent8-mcp-server"]
}
}
}
- Restart Claude Desktop
Adding New Prompts
Add new prompts to the registerSamplePrompts
method in the src/prompts/provider.ts
file.
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
MCP Package Docs Server
Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.
Claude Code MCP
An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.
@kazuph/mcp-taskmanager
Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.
Linear MCP Server
Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.
mermaid-mcp-server
A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.
Jira-Context-MCP
MCP server to provide Jira Tickets information to AI coding agents like Cursor

Linear MCP Server
A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.