
MCP Server
A Python backend implementing the Model Context Protocol with Azure OpenAI integration, enabling applications to interact with LLMs through a standardized interface with streaming capabilities.
README
MCP Server - Model Context Protocol Implementation
A comprehensive Python backend implementing the Model Context Protocol (MCP) with JSON-RPC 2.0, Azure OpenAI integration, and Server-Sent Events streaming capabilities.
Features
- Complete MCP Protocol Support: JSON-RPC 2.0 compliant implementation
- Azure OpenAI Integration: Seamless connection to Azure OpenAI services
- Streaming Responses: Real-time streaming via Server-Sent Events (SSE)
- Resource Management: File system resource discovery and access
- Tool Execution: Extensible tool registry with validation
- Authentication: JWT-based authentication system
- Monitoring: Prometheus metrics collection
- Web Interface: Built-in testing and management interface
Architecture
├── app/
│ ├── core/
│ │ ├── config.py # Configuration management
│ │ ├── errors.py # Custom exception classes
│ │ └── logging.py # Structured logging setup
│ ├── protocol/
│ │ ├── enums.py # MCP protocol enumerations
│ │ └── models.py # Pydantic models for MCP
│ ├── services/
│ │ ├── llm.py # Azure OpenAI service
│ │ ├── resources.py # Resource management
│ │ └── tools.py # Tool registry and execution
│ ├── transport/
│ │ └── http.py # HTTP transport layer
│ ├── auth.py # JWT authentication
│ └── metrics.py # Prometheus metrics
├── static/
│ └── app.js # Frontend JavaScript
├── templates/
│ └── index.html # Web interface
├── main.py # Application entry point
└── server.py # Flask app configuration
Installation
- Clone the repository:
git clone <repository-url>
cd mcp-server
- Install dependencies:
pip install -r requirements.txt
- Set up environment variables:
# Required for Azure OpenAI
export OPENAI_API_KEY="your-azure-openai-api-key"
export AZURE_OPENAI_ENDPOINT="https://your-resource.openai.azure.com"
export AZURE_OPENAI_DEPLOYMENT="your-deployment-name"
export AZURE_OPENAI_API_VERSION="2024-08-01-preview"
# Optional configurations
export JWT_SECRET="your-jwt-secret"
export SESSION_SECRET="your-session-secret"
Configuration
The server supports both Azure OpenAI and standard OpenAI configurations:
Azure OpenAI (Recommended)
USE_AZURE_OPENAI = True
AZURE_OPENAI_ENDPOINT = "https://your-resource.openai.azure.com"
AZURE_OPENAI_DEPLOYMENT = "gpt-4o"
AZURE_OPENAI_API_VERSION = "2024-08-01-preview"
Standard OpenAI
USE_AZURE_OPENAI = False
OPENAI_MODEL = "gpt-4o"
Running the Server
Development
python main.py
Production
gunicorn --bind 0.0.0.0:5000 --reuse-port --reload main:app
The server will be available at http://localhost:5000
API Endpoints
MCP Protocol
POST /rpc
- JSON-RPC 2.0 endpoint for MCP requestsGET /events
- Server-Sent Events for streaming responses
Management
GET /
- Web interface for testing and managementGET /health
- Health check endpointGET /metrics
- Prometheus metrics
Authentication
The server uses JWT-based authentication. Include the token in requests:
# HTTP Headers
Authorization: Bearer <token>
# Query Parameters (for SSE)
?token=<token>
Default development token: devtoken
MCP Protocol Support
Capabilities
- Resources: File system resource discovery and reading
- Tools: Extensible tool execution with validation
- Sampling: LLM completion requests (streaming and non-streaming)
- Logging: Structured JSON logging
Example Requests
Initialize Connection
{
"jsonrpc": "2.0",
"id": "init",
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": {"name": "test-client", "version": "1.0.0"}
}
}
List Resources
{
"jsonrpc": "2.0",
"id": "resources",
"method": "resources/list",
"params": {}
}
Execute Tool
{
"jsonrpc": "2.0",
"id": "tool",
"method": "tools/call",
"params": {
"name": "calculate",
"arguments": {"operation": "add", "a": 5, "b": 3}
}
}
LLM Completion
{
"jsonrpc": "2.0",
"id": "completion",
"method": "sampling/createMessage",
"params": {
"messages": [{"content": {"type": "text", "text": "Hello, world!"}}],
"maxTokens": 100
}
}
Extending the Server
Adding New Tools
from app.services.tools import mcp_tool
@mcp_tool("my_tool", {
"type": "object",
"properties": {
"param1": {"type": "string"},
"param2": {"type": "number"}
},
"required": ["param1"]
})
async def my_custom_tool(param1: str, param2: float = 0.0):
"""Custom tool implementation"""
return {"result": f"Processed {param1} with {param2}"}
Custom Resource Handlers
from app.services.resources import ResourceService
class CustomResourceService(ResourceService):
async def list_resources(self, base_path: str = "."):
# Custom resource discovery logic
pass
Monitoring
The server includes comprehensive monitoring:
- Prometheus Metrics: Request counts, response times, error rates
- Structured Logging: JSON-formatted logs with correlation IDs
- Health Checks: Application and dependency status
Security
- Environment-based configuration (no hardcoded secrets)
- JWT authentication with configurable secrets
- Input validation on all endpoints
- Rate limiting headers from Azure OpenAI
Development
Running Tests
# Test the API endpoints
curl -X POST http://localhost:5000/rpc \
-H "Authorization: Bearer devtoken" \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":"test","method":"initialize","params":{}}'
# Test streaming
curl -N "http://localhost:5000/events?token=devtoken&prompt=Hello&stream=true"
Adding Dependencies
pip install <package-name>
pip freeze > requirements.txt
Troubleshooting
Common Issues
-
Azure OpenAI Connection Errors
- Verify
AZURE_OPENAI_ENDPOINT
andAZURE_OPENAI_DEPLOYMENT
- Check API key permissions
- Ensure correct API version
- Verify
-
Authentication Failures
- Verify JWT token format
- Check token expiration
- Ensure correct secret configuration
-
Streaming Issues
- Use query parameters for SSE authentication
- Check network connectivity for long-running streams
Debug Logging
Enable debug logging by setting:
export DEBUG=true
License
This project is licensed under the MIT License.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Submit a pull request
Support
For issues and questions:
- Check the troubleshooting section
- Review the API documentation
- Open an issue on GitHub
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.