MCP Server

MCP Server

A Python backend implementing the Model Context Protocol with Azure OpenAI integration, enabling applications to interact with LLMs through a standardized interface with streaming capabilities.

Category
Visit Server

README

MCP Server - Model Context Protocol Implementation

A comprehensive Python backend implementing the Model Context Protocol (MCP) with JSON-RPC 2.0, Azure OpenAI integration, and Server-Sent Events streaming capabilities.

Features

  • Complete MCP Protocol Support: JSON-RPC 2.0 compliant implementation
  • Azure OpenAI Integration: Seamless connection to Azure OpenAI services
  • Streaming Responses: Real-time streaming via Server-Sent Events (SSE)
  • Resource Management: File system resource discovery and access
  • Tool Execution: Extensible tool registry with validation
  • Authentication: JWT-based authentication system
  • Monitoring: Prometheus metrics collection
  • Web Interface: Built-in testing and management interface

Architecture

├── app/
│   ├── core/
│   │   ├── config.py          # Configuration management
│   │   ├── errors.py          # Custom exception classes
│   │   └── logging.py         # Structured logging setup
│   ├── protocol/
│   │   ├── enums.py           # MCP protocol enumerations
│   │   └── models.py          # Pydantic models for MCP
│   ├── services/
│   │   ├── llm.py             # Azure OpenAI service
│   │   ├── resources.py       # Resource management
│   │   └── tools.py           # Tool registry and execution
│   ├── transport/
│   │   └── http.py            # HTTP transport layer
│   ├── auth.py                # JWT authentication
│   └── metrics.py             # Prometheus metrics
├── static/
│   └── app.js                 # Frontend JavaScript
├── templates/
│   └── index.html             # Web interface
├── main.py                    # Application entry point
└── server.py                  # Flask app configuration

Installation

  1. Clone the repository:
git clone <repository-url>
cd mcp-server
  1. Install dependencies:
pip install -r requirements.txt
  1. Set up environment variables:
# Required for Azure OpenAI
export OPENAI_API_KEY="your-azure-openai-api-key"
export AZURE_OPENAI_ENDPOINT="https://your-resource.openai.azure.com"
export AZURE_OPENAI_DEPLOYMENT="your-deployment-name"
export AZURE_OPENAI_API_VERSION="2024-08-01-preview"

# Optional configurations
export JWT_SECRET="your-jwt-secret"
export SESSION_SECRET="your-session-secret"

Configuration

The server supports both Azure OpenAI and standard OpenAI configurations:

Azure OpenAI (Recommended)

USE_AZURE_OPENAI = True
AZURE_OPENAI_ENDPOINT = "https://your-resource.openai.azure.com"
AZURE_OPENAI_DEPLOYMENT = "gpt-4o"
AZURE_OPENAI_API_VERSION = "2024-08-01-preview"

Standard OpenAI

USE_AZURE_OPENAI = False
OPENAI_MODEL = "gpt-4o"

Running the Server

Development

python main.py

Production

gunicorn --bind 0.0.0.0:5000 --reuse-port --reload main:app

The server will be available at http://localhost:5000

API Endpoints

MCP Protocol

  • POST /rpc - JSON-RPC 2.0 endpoint for MCP requests
  • GET /events - Server-Sent Events for streaming responses

Management

  • GET / - Web interface for testing and management
  • GET /health - Health check endpoint
  • GET /metrics - Prometheus metrics

Authentication

The server uses JWT-based authentication. Include the token in requests:

# HTTP Headers
Authorization: Bearer <token>

# Query Parameters (for SSE)
?token=<token>

Default development token: devtoken

MCP Protocol Support

Capabilities

  • Resources: File system resource discovery and reading
  • Tools: Extensible tool execution with validation
  • Sampling: LLM completion requests (streaming and non-streaming)
  • Logging: Structured JSON logging

Example Requests

Initialize Connection

{
  "jsonrpc": "2.0",
  "id": "init",
  "method": "initialize",
  "params": {
    "protocolVersion": "2024-11-05",
    "capabilities": {},
    "clientInfo": {"name": "test-client", "version": "1.0.0"}
  }
}

List Resources

{
  "jsonrpc": "2.0",
  "id": "resources",
  "method": "resources/list",
  "params": {}
}

Execute Tool

{
  "jsonrpc": "2.0",
  "id": "tool",
  "method": "tools/call",
  "params": {
    "name": "calculate",
    "arguments": {"operation": "add", "a": 5, "b": 3}
  }
}

LLM Completion

{
  "jsonrpc": "2.0",
  "id": "completion",
  "method": "sampling/createMessage",
  "params": {
    "messages": [{"content": {"type": "text", "text": "Hello, world!"}}],
    "maxTokens": 100
  }
}

Extending the Server

Adding New Tools

from app.services.tools import mcp_tool

@mcp_tool("my_tool", {
    "type": "object",
    "properties": {
        "param1": {"type": "string"},
        "param2": {"type": "number"}
    },
    "required": ["param1"]
})
async def my_custom_tool(param1: str, param2: float = 0.0):
    """Custom tool implementation"""
    return {"result": f"Processed {param1} with {param2}"}

Custom Resource Handlers

from app.services.resources import ResourceService

class CustomResourceService(ResourceService):
    async def list_resources(self, base_path: str = "."):
        # Custom resource discovery logic
        pass

Monitoring

The server includes comprehensive monitoring:

  • Prometheus Metrics: Request counts, response times, error rates
  • Structured Logging: JSON-formatted logs with correlation IDs
  • Health Checks: Application and dependency status

Security

  • Environment-based configuration (no hardcoded secrets)
  • JWT authentication with configurable secrets
  • Input validation on all endpoints
  • Rate limiting headers from Azure OpenAI

Development

Running Tests

# Test the API endpoints
curl -X POST http://localhost:5000/rpc \
  -H "Authorization: Bearer devtoken" \
  -H "Content-Type: application/json" \
  -d '{"jsonrpc":"2.0","id":"test","method":"initialize","params":{}}'

# Test streaming
curl -N "http://localhost:5000/events?token=devtoken&prompt=Hello&stream=true"

Adding Dependencies

pip install <package-name>
pip freeze > requirements.txt

Troubleshooting

Common Issues

  1. Azure OpenAI Connection Errors

    • Verify AZURE_OPENAI_ENDPOINT and AZURE_OPENAI_DEPLOYMENT
    • Check API key permissions
    • Ensure correct API version
  2. Authentication Failures

    • Verify JWT token format
    • Check token expiration
    • Ensure correct secret configuration
  3. Streaming Issues

    • Use query parameters for SSE authentication
    • Check network connectivity for long-running streams

Debug Logging

Enable debug logging by setting:

export DEBUG=true

License

This project is licensed under the MIT License.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Submit a pull request

Support

For issues and questions:

  • Check the troubleshooting section
  • Review the API documentation
  • Open an issue on GitHub

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured