MCP Selenium Grid

MCP Selenium Grid

Enables browser automation by managing Selenium Grid browser instances (Chrome, Firefox, Edge) in Docker or Kubernetes environments. Provides secure, scalable browser control for AI agents and testing workflows.

Category
Visit Server

README

πŸ€– MCP Selenium Grid

Tests GitHub Last Commit GitHub Release GitHub commits since latest release GitHub Commit Activity GitHub Contributors License

A Model Context Protocol (MCP) server for managing Selenium Grid browser instances. Useful for browser automation and testing workflows.

The MCP Selenium Grid provides a MCP Server for creating and managing browser instances in both Docker and Kubernetes environments. It's designed to work with AI agents and automation tools that need browser automation capabilities.

Key Features

  • Multi-browser support: Chrome, Firefox and Edge
  • Dual backend support: Docker and Kubernetes deployment modes
  • Secure API: Token-based authentication for browser management
  • Scalable architecture: Support for multiple browser instances
  • MCP compliance: Follows Model Context Protocol standards

πŸš€ Quick Start

Prerequisites

  • uv (Python dependency manager)
  • Docker (for Docker deployment mode)
  • K3s (for Kubernetes deployment mode, optional)

πŸ“– Usage

The MCP Selenium Grid provides a Web API for creating and managing browser instances. The server runs on localhost:8000 and exposes MCP endpoints at /mcp (Http Transport) and /sse (Server Sent Events).

Note: All requests to the server root http://localhost:8000 will be redirected to either /mcp or /sse endpoints, depending on the request, but you can choose to use directly /mcp (Http Transport) or /sse (Server Sent Events) endpoints.

Known Issues & Limitations

  • When you use STDIO transport with the --stdio flag, the MCP Servers do not shut down the same way they do in the terminal. To clean up resources and remove containers or pods, run:

    uv run mcp-selenium-grid clean
    
    uv run mcp-selenium-grid clean -d kubernetes
    

MCP Client Configuration

🐳 Docker Deployment

For Docker-based deployment, ensure Docker is running and use the Docker configuration in your MCP client setup.

{
  "mcpServers": {
    "mcp-selenium-grid": {
      "command": "uvx",
      "args": ["mcp-selenium-grid", "server", "run",
        "--host", "127.0.0.1",
        "--port", "8000",
        "--stdio",
      ],
      "env": {
        "AUTH_ENABLED": "false",
        "ALLOWED_ORIGINS": "[\"http://127.0.0.1:8000\"]",
        "DEPLOYMENT_MODE": "docker",
        "SELENIUM_GRID__USERNAME": "USER",
        "SELENIUM_GRID__PASSWORD": "CHANGE_ME",
        "SELENIUM_GRID__VNC_PASSWORD": "CHANGE_ME",
        "SELENIUM_GRID__VNC_VIEW_ONLY": "false",
        "SELENIUM_GRID__MAX_BROWSER_INSTANCES": "4",
        "SELENIUM_GRID__SE_NODE_MAX_SESSIONS": "1",
        "FASTMCP_EXPERIMENTAL_ENABLE_NEW_OPENAPI_PARSER": "true"
      }
    }
  }
}

The server will be available at http://localhost:8000 with interactive API documentation at http://localhost:8000/docs.

☸️ Kubernetes Deployment

3. Kubernetes Setup (Optional)

This project supports Kubernetes deployment for scalable browser instance management. We use K3s for local development and testing.

Install K3s (https://docs.k3s.io/quick-start)
# Install K3s
curl -sfL https://get.k3s.io | sh -

# Verify installation
k3s --version

# Start if not running
sudo systemctl start k3s
Create K3s Kubernetes Context

After installing K3s, you might want to create a dedicated kubectl context for it:

# Copy K3s kubeconfig
mkdir -p ~/.kube
sudo cp /etc/rancher/k3s/k3s.yaml ~/.kube/config-local-k3s
sudo chown $USER:$USER ~/.kube/config-local-k3s
chmod 600 ~/.kube/config-local-k3s

# Create context
KUBECONFIG=~/.kube/config-local-k3s \
kubectl config set-context k3s-selenium-grid \
  --cluster=default \
  --user=default
Deploy Selenium Grid

Please run for help to get to know the available commands and parameters:

uvx mcp-selenium-grid helm --help
uvx mcp-selenium-grid helm deploy --help
uvx mcp-selenium-grid helm uninstall --help

Deploy using default parameters:

uvx mcp-selenium-grid helm deploy

Uninstall using default parameters:

# using default parameters
uvx mcp-selenium-grid helm uninstall --delete-namespace
{
  "mcpServers": {
    "mcp-selenium-grid": {
      "command": "uvx",
      "args": ["mcp-selenium-grid", "server", "run",
        "--host", "127.0.0.1",
        "--port", "8000",
        "--stdio",
      ],
      "env": {
        "AUTH_ENABLED": "false",
        "ALLOWED_ORIGINS": "[\"http://127.0.0.1:8000\"]",
        "DEPLOYMENT_MODE": "kubernetes",
        "SELENIUM_GRID__USERNAME": "USER",
        "SELENIUM_GRID__PASSWORD": "CHANGE_ME",
        "SELENIUM_GRID__VNC_PASSWORD": "CHANGE_ME",
        "SELENIUM_GRID__VNC_VIEW_ONLY": "false",
        "SELENIUM_GRID__MAX_BROWSER_INSTANCES": "4",
        "SELENIUM_GRID__SE_NODE_MAX_SESSIONS": "1",
        "KUBERNETES__KUBECONFIG": "~/.kube/config-local-k3s",
        "KUBERNETES__CONTEXT": "k3s-selenium-grid",
        "KUBERNETES__NAMESPACE": "selenium-grid-dev",
        "KUBERNETES__SELENIUM_GRID_SERVICE_NAME": "selenium-grid",
        "FASTMCP_EXPERIMENTAL_ENABLE_NEW_OPENAPI_PARSER": "true"
      }
    }
  }
}
{
  "mcpServers": {
    "mcp-selenium-grid": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "--init",
        "--network=host",
        "-v", "/home/user/.kube/config-local-k3s:/.kube/config-local-k3s:ro", // path to your kubeconfig file
        "-e", "AUTH_ENABLED=false",
        "-e", "ALLOWED_ORIGINS=[\\\"http://127.0.0.1:8000\\\"]",
        "-e", "DEPLOYMENT_MODE=kubernetes", // required for docker
        "-e", "SELENIUM_GRID__USERNAME=USER",
        "-e", "SELENIUM_GRID__PASSWORD=CHANGE_ME",
        "-e", "SELENIUM_GRID__VNC_PASSWORD=CHANGE_ME",
        "-e", "SELENIUM_GRID__VNC_VIEW_ONLY=false",
        "-e", "SELENIUM_GRID__MAX_BROWSER_INSTANCES=4",
        "-e", "SELENIUM_GRID__SE_NODE_MAX_SESSIONS=1",
        "-e", "KUBERNETES__KUBECONFIG=/.kube/config-local-k3s", // path to your kubeconfig file
        "-e", "KUBERNETES__USE_HOST_DOCKER_INTERNAL=true",
        "-e", "KUBERNETES__CONTEXT=k3s-selenium-grid",
        "-e", "KUBERNETES__NAMESPACE=selenium-grid-dev",
        "-e", "KUBERNETES__SELENIUM_GRID_SERVICE_NAME=selenium-grid",
        "-e", "FASTMCP_EXPERIMENTAL_ENABLE_NEW_OPENAPI_PARSER=true",
        "ghcr.io/catchnip/mcp-selenium-grid:latest"
      ]
    }
  }
}

The server will be available at http://localhost:8000 with interactive API documentation at http://localhost:8000/docs.

Server with auth enabled

UVX

Using default args

uvx mcp-selenium-grid server run

Custom args

API_TOKEN=CHANGE_ME uvx mcp-selenium-grid server run --host 127.0.0.1 --port 8000

Docker

Default args

docker run -i --rm --init --network=host \
  -v ~/.kube/config-local-k3s:/kube/config-local-k3s:ro \
  -e KUBERNETES__KUBECONFIG=/kube/config-local-k3s \
  ghcr.io/catchnip/mcp-selenium-grid:latest

Custom args

docker run -i --rm --init \
  --network=host \
  -v ~/.kube/config-local-k3s:/kube/config-local-k3s:ro \
  -e API_TOKEN=CHANGE_ME \
  -e ALLOWED_ORIGINS='["http://127.0.0.1:8000"]' \
  -e DEPLOYMENT_MODE=kubernetes \
  -e SELENIUM_GRID__USERNAME=USER \
  -e SELENIUM_GRID__PASSWORD=CHANGE_ME \
  -e SELENIUM_GRID__VNC_PASSWORD=CHANGE_ME \
  -e SELENIUM_GRID__VNC_VIEW_ONLY=false \
  -e SELENIUM_GRID__MAX_BROWSER_INSTANCES=4 \
  -e SELENIUM_GRID__SE_NODE_MAX_SESSIONS=1 \
  -e KUBERNETES__KUBECONFIG=/kube/config-local-k3s \
  --add-host=host.docker.inte.rnal:host-gateway \
  -e KUBERNETES__USE_HOST_DOCKER_INTERNAL=true \
  -e KUBERNETES__CONTEXT=k3s-selenium-grid \
  -e KUBERNETES__NAMESPACE=selenium-grid-dev \
  -e KUBERNETES__SELENIUM_GRID_SERVICE_NAME=selenium-grid \
  ghcr.io/catchnip/mcp-selenium-grid:latest

Note: All environment variables have default values.

MCP Server configuration (mcp.json)

{
  "mcpServers": {
    "mcp-selenium-grid": {
      "url": "http://localhost:8000",
      "headers": {
        "Authorization": "Bearer CHANGE_ME"
      }
    }
  }
}
{
  "mcpServers": {
    "mcp-selenium-grid": {
      "url": "http://localhost:8000/mcp",
      "headers": {
        "Authorization": "Bearer CHANGE_ME"
      }
    }
  }
}
{
  "mcpServers": {
    "mcp-selenium-grid": {
      "url": "http://localhost:8000/sse",
      "headers": {
        "Authorization": "Bearer CHANGE_ME"
      }
    }
  }
}

🀝 Contributing

For development setup, testing, and contribution guidelines, please see CONTRIBUTING.md.

πŸ“„ License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured