MCP Secure Local Server

MCP Secure Local Server

A security-focused Model Context Protocol server that enables controlled local tool execution through strict network firewalls, filesystem protections, and rate-limiting policies. It features a plugin-based architecture for progressive tool discovery and includes reference implementations for web searching and bug tracking.

Category
Visit Server

README

MCP Secure Local Server

A production-ready, security-first Model Context Protocol (MCP) server that runs locally with strict security controls while allowing controlled external network access for specific use cases like web search.

Features

  • Security-First Design: All operations are validated against a configurable security policy
  • Network Firewall: Block all external network access except explicitly allowlisted endpoints
  • Input Validation: JSON Schema validation, path traversal protection, command sanitization
  • Rate Limiting: Per-tool rate limits to prevent abuse
  • Audit Logging: JSON Lines format logging with sensitive data redaction
  • Plugin System: Extensible architecture for adding new tools
  • MCP Protocol Compliant: Full JSON-RPC 2.0 over STDIO transport

Quick Start

Installation

# Clone the repository
git clone <repository-url>
cd mcp-server

# Install dependencies with uv
uv sync

Running the Server

# Run with default policy
uv run python main.py

# Run with custom policy file
uv run python main.py --policy /path/to/policy.yaml

# Show version
uv run python main.py --version

Integration with MCP Clients

This server works with any MCP-compatible client. Add the following to your client's MCP configuration:

{
  "mcpServers": {
    "secure-local": {
      "command": "uv",
      "args": ["run", "python", "/path/to/mcp-server/main.py"],
      "env": {}
    }
  }
}

Example client configuration locations:

  • Claude Desktop: ~/Library/Application Support/Claude/claude_desktop_config.json (macOS)
  • Other MCP clients: Refer to your client's documentation for the configuration file location

Architecture

mcp-server/
├── main.py                    # CLI entry point
├── config/
│   └── policy.yaml            # Security policy configuration
├── src/
│   ├── server.py              # Main MCP server
│   ├── protocol/
│   │   ├── jsonrpc.py         # JSON-RPC 2.0 parsing
│   │   ├── transport.py       # STDIO transport
│   │   ├── lifecycle.py       # MCP lifecycle management
│   │   └── tools.py           # tools/list & tools/call handlers
│   ├── plugins/
│   │   ├── base.py            # Plugin base class
│   │   ├── loader.py          # Plugin discovery
│   │   ├── dispatcher.py      # Tool call routing
│   │   ├── discovery.py       # Built-in: Progressive disclosure tools
│   │   ├── websearch.py       # Example: DuckDuckGo search plugin
│   │   └── bugtracker.py      # Example: Bug tracking plugin
│   └── security/
│       ├── policy.py          # Policy loader
│       ├── firewall.py        # Network access control
│       ├── validator.py       # Input validation
│       ├── engine.py          # Integrated security engine
│       └── audit.py           # Audit logging
└── tests/                     # Test suite (343 tests, 96%+ coverage)

Security Policy

The security policy is defined in YAML format. See config/policy.yaml for a complete example.

Network Security

network:
  # Allowed local network ranges
  allowed_ranges:
    - "127.0.0.0/8"
    - "10.0.0.0/8"
    - "192.168.0.0/16"
  
  # Explicitly allowed external endpoints
  allowed_endpoints:
    - host: "lite.duckduckgo.com"
      ports: [443]
      description: "DuckDuckGo search"
  
  # Blocked ports (even on local network)
  blocked_ports:
    - 22  # SSH  
  
  # DNS settings
  allow_dns: true
  dns_allowlist:
    - "lite.duckduckgo.com"

Filesystem Security

filesystem:
  # Allowed paths (supports globs and env vars)
  allowed_paths:
    - "${HOME}/projects/**"
    - "/tmp/mcp-workspace/**"
  
  # Denied paths (takes precedence)
  denied_paths:
    - "**/.ssh/**"
    - "**/.aws/**"
    - "**/*.pem"
    - "**/.env"

Tool Configuration

tools:
  # Rate limits (requests per minute)
  rate_limits:
    default: 60
    web_search: 20
  
  # Execution timeout
  timeout: 30

Audit Logging

audit:
  log_file: "${HOME}/.mcp-secure/audit.log"
  log_level: "INFO"

Built-in Tools

The server automatically registers discovery tools for progressive disclosure, enabling agents to efficiently find and load only the tools they need.

search_tools

Search for available tools by keyword or category. Use detail_level to control context usage.

Input Schema:

{
  "type": "object",
  "properties": {
    "query": {
      "type": "string",
      "description": "Keyword to search in tool names and descriptions"
    },
    "category": {
      "type": "string",
      "description": "Filter by plugin category (e.g., 'bugtracker')"
    },
    "detail_level": {
      "type": "string",
      "enum": ["name", "summary", "full"],
      "description": "Level of detail: 'name' (just names), 'summary' (names + descriptions), 'full' (complete schemas)"
    }
  }
}

Example - Find bug-related tools with minimal context:

{
  "name": "search_tools",
  "arguments": {
    "query": "bug",
    "detail_level": "name"
  }
}
// Returns: ["add_bug", "get_bug", "update_bug", "close_bug", "list_bugs", "search_bugs_global"]

Example - Get full schema for a specific category:

{
  "name": "search_tools",
  "arguments": {
    "category": "websearch",
    "detail_level": "full"
  }
}

list_categories

List all available tool categories (plugins) with tool counts. Use this to discover capabilities before searching.

Input Schema:

{
  "type": "object",
  "properties": {}
}

Example Response:

[
  {
    "category": "discovery",
    "version": "1.0.0",
    "tool_count": 2,
    "tools": ["search_tools", "list_categories"]
  },
  {
    "category": "websearch",
    "version": "1.0.0",
    "tool_count": 1,
    "tools": ["web_search"]
  },
  {
    "category": "bugtracker",
    "version": "1.0.0",
    "tool_count": 7,
    "tools": ["init_bugtracker", "add_bug", "get_bug", "update_bug", "close_bug", "list_bugs", "search_bugs_global"]
  }
]

Example Plugins

The server includes example plugins to demonstrate the plugin architecture. These are provided as reference implementations showing how to build your own plugins for any use case.

web_search (Example Plugin)

An example plugin that searches the web using DuckDuckGo. Demonstrates how to build plugins that make external network requests within the security policy.

Input Schema:

{
  "type": "object",
  "properties": {
    "query": {
      "type": "string",
      "description": "The search query"
    },
    "max_results": {
      "type": "integer",
      "description": "Maximum results to return (default: 5)"
    }
  },
  "required": ["query"]
}

Example:

{
  "name": "web_search",
  "arguments": {
    "query": "Python asyncio tutorial",
    "max_results": 3
  }
}

Bug Tracker (Example Plugin)

An example plugin implementing a local bug tracking system with a centralized SQLite database. Demonstrates how to build plugins that manage local state, support multiple projects, and perform complex queries.

init_bugtracker

Initialize bug tracking for a project.

Input Schema:

{
  "type": "object",
  "properties": {
    "project_path": {
      "type": "string",
      "description": "Path to project directory (defaults to cwd)"
    }
  }
}

add_bug

Add a new bug to the tracker.

Input Schema:

{
  "type": "object",
  "properties": {
    "title": {
      "type": "string",
      "description": "Brief title for the bug"
    },
    "description": {
      "type": "string",
      "description": "Detailed description"
    },
    "priority": {
      "type": "string",
      "enum": ["low", "medium", "high", "critical"],
      "description": "Bug priority (default: medium)"
    },
    "tags": {
      "type": "array",
      "items": {"type": "string"},
      "description": "Tags for categorization"
    },
    "project_path": {
      "type": "string",
      "description": "Path to project directory (defaults to cwd)"
    }
  },
  "required": ["title"]
}

get_bug

Retrieve a bug by ID.

Input Schema:

{
  "type": "object",
  "properties": {
    "bug_id": {
      "type": "string",
      "description": "The bug ID to retrieve"
    },
    "project_path": {
      "type": "string",
      "description": "Path to project directory (defaults to cwd)"
    }
  },
  "required": ["bug_id"]
}

update_bug

Update an existing bug's status, priority, tags, or related bugs. Supports note-only updates for progress tracking.

Input Schema:

{
  "type": "object",
  "properties": {
    "bug_id": {
      "type": "string",
      "description": "The bug ID to update"
    },
    "status": {
      "type": "string",
      "enum": ["open", "in_progress", "closed"]
    },
    "priority": {
      "type": "string",
      "enum": ["low", "medium", "high", "critical"]
    },
    "tags": {
      "type": "array",
      "items": {"type": "string"},
      "description": "New tags (replaces existing)"
    },
    "related_bugs": {
      "type": "array",
      "description": "Related bugs with relationship type"
    },
    "note": {
      "type": "string",
      "description": "Note for the history entry"
    },
    "project_path": {
      "type": "string"
    }
  },
  "required": ["bug_id"]
}

close_bug

Close a bug with a resolution note.

Input Schema:

{
  "type": "object",
  "properties": {
    "bug_id": {
      "type": "string",
      "description": "The bug ID to close"
    },
    "resolution": {
      "type": "string",
      "description": "Resolution note explaining how the bug was fixed"
    },
    "project_path": {
      "type": "string"
    }
  },
  "required": ["bug_id"]
}

list_bugs

List bugs with optional filtering.

Input Schema:

{
  "type": "object",
  "properties": {
    "status": {
      "type": "string",
      "enum": ["open", "in_progress", "closed"]
    },
    "priority": {
      "type": "string",
      "enum": ["low", "medium", "high", "critical"]
    },
    "tags": {
      "type": "array",
      "items": {"type": "string"},
      "description": "Filter by tags (must have ALL specified tags)"
    },
    "project_path": {
      "type": "string"
    }
  }
}

search_bugs_global

Search bugs across all indexed projects.

Input Schema:

{
  "type": "object",
  "properties": {
    "status": {
      "type": "string",
      "enum": ["open", "in_progress", "closed"]
    },
    "priority": {
      "type": "string",
      "enum": ["low", "medium", "high", "critical"]
    },
    "tags": {
      "type": "array",
      "items": {"type": "string"}
    }
  }
}

Example - Create and track a bug:

// Add a bug
{
  "name": "add_bug",
  "arguments": {
    "title": "Login button not responding",
    "description": "The login button on the home page doesn't trigger the auth flow",
    "priority": "high",
    "tags": ["ui", "auth"]
  }
}

// Update with progress
{
  "name": "update_bug",
  "arguments": {
    "bug_id": "BUG-001",
    "status": "in_progress",
    "note": "Identified missing onClick handler"
  }
}

// Close with resolution
{
  "name": "close_bug",
  "arguments": {
    "bug_id": "BUG-001",
    "resolution": "Added onClick handler to LoginButton component"
  }
}

Creating Custom Plugins

Python Plugins

Plugins must inherit from PluginBase and implement the required methods:

from src.plugins.base import PluginBase, ToolDefinition, ToolResult

class MyPlugin(PluginBase):
    @property
    def name(self) -> str:
        return "my_plugin"
    
    @property
    def version(self) -> str:
        return "1.0.0"
    
    def get_tools(self) -> list[ToolDefinition]:
        return [
            ToolDefinition(
                name="my_tool",
                description="Does something useful",
                input_schema={
                    "type": "object",
                    "properties": {
                        "input": {"type": "string"}
                    },
                    "required": ["input"]
                },
            )
        ]
    
    def execute(self, tool_name: str, arguments: dict) -> ToolResult:
        if tool_name == "my_tool":
            result = do_something(arguments["input"])
            return ToolResult(
                content=[{"type": "text", "text": result}]
            )
        return ToolResult(
            content=[{"type": "text", "text": "Unknown tool"}],
            is_error=True
        )

Register the plugin in main.py:

from my_plugin import MyPlugin

server.register_plugin(MyPlugin())

External Plugins (Non-Python)

The plugin system can support tools written in any language (Rust, JavaScript, TypeScript, Go, etc.) through a subprocess wrapper approach. This is a planned feature - contributions welcome.

Architecture Overview

External plugins run as separate processes, communicating with the Python wrapper via JSON over stdin/stdout:

┌─────────────────────────────────────────────────────────────┐
│                     MCP Server (Python)                      │
│                                                              │
│  ┌──────────────┐    ┌──────────────┐    ┌──────────────┐   │
│  │ WebSearch    │    │ BugTracker   │    │ External     │   │
│  │ (Python)     │    │ (Python)     │    │ Plugin       │   │
│  └──────────────┘    └──────────────┘    │ (Wrapper)    │   │
│                                          └──────┬───────┘   │
│                                                 │            │
└─────────────────────────────────────────────────┼────────────┘
                                                  │ JSON/stdin/stdout
                                                  ▼
                                          ┌──────────────┐
                                          │ my-rust-tool │
                                          │ (subprocess) │
                                          └──────────────┘

How It Works

  1. Python Wrapper: A thin ExternalPlugin class inherits from PluginBase and handles the subprocess lifecycle
  2. Manifest: A manifest.yaml declares the tool definitions and points to the executable
  3. Contract: The external tool receives JSON on stdin and writes JSON to stdout

Manifest Format

name: my-rust-tools
version: "1.0.0"
type: external
executable: ./target/release/my-rust-tool

tools:
  - name: calculate_hash
    description: Calculate cryptographic hash of input
    input_schema:
      type: object
      properties:
        algorithm:
          type: string
          enum: [sha256, sha512, blake3]
        input:
          type: string
      required: [algorithm, input]

External Tool Contract

The external executable must:

  1. Accept a JSON object on stdin:
{
  "tool": "calculate_hash",
  "arguments": {
    "algorithm": "sha256",
    "input": "hello world"
  }
}
  1. Return a JSON object on stdout:
{
  "content": [
    {"type": "text", "text": "sha256: b94d27b9934d3e08..."}
  ],
  "isError": false
}
  1. Exit with code 0 on success, non-zero on failure

Example: Rust Tool

use serde::{Deserialize, Serialize};
use std::io::{self, BufRead, Write};

#[derive(Deserialize)]
struct Request {
    tool: String,
    arguments: serde_json::Value,
}

#[derive(Serialize)]
struct Response {
    content: Vec<Content>,
    #[serde(rename = "isError")]
    is_error: bool,
}

#[derive(Serialize)]
struct Content {
    #[serde(rename = "type")]
    content_type: String,
    text: String,
}

fn main() {
    let stdin = io::stdin();
    let line = stdin.lock().lines().next().unwrap().unwrap();
    let request: Request = serde_json::from_str(&line).unwrap();
    
    let result = match request.tool.as_str() {
        "calculate_hash" => calculate_hash(request.arguments),
        _ => Err(format!("Unknown tool: {}", request.tool)),
    };
    
    let response = match result {
        Ok(text) => Response {
            content: vec![Content { content_type: "text".into(), text }],
            is_error: false,
        },
        Err(e) => Response {
            content: vec![Content { content_type: "text".into(), text: e }],
            is_error: true,
        },
    };
    
    println!("{}", serde_json::to_string(&response).unwrap());
}

Example: Node.js Tool

const readline = require('readline');

const rl = readline.createInterface({ input: process.stdin });

rl.on('line', (line) => {
  const request = JSON.parse(line);
  
  let response;
  try {
    const result = handleTool(request.tool, request.arguments);
    response = {
      content: [{ type: 'text', text: result }],
      isError: false
    };
  } catch (e) {
    response = {
      content: [{ type: 'text', text: e.message }],
      isError: true
    };
  }
  
  console.log(JSON.stringify(response));
  process.exit(0);
});

function handleTool(tool, args) {
  switch (tool) {
    case 'format_json':
      return JSON.stringify(JSON.parse(args.input), null, 2);
    default:
      throw new Error(`Unknown tool: ${tool}`);
  }
}

Security Considerations for External Plugins

  1. Process Isolation: External tools run in separate processes with their own memory space
  2. Timeout Enforcement: The wrapper kills subprocesses that exceed the configured timeout
  3. No Network Inheritance: Subprocess network access is governed by OS-level controls
  4. Executable Allowlist: Only executables listed in registered manifests can be invoked
  5. Input Validation: JSON schemas are validated before passing to the subprocess

Trade-offs

Aspect Python Plugin External Plugin
Startup latency None ~10-50ms per call
Memory Shared with server Separate process
Language Python only Any language
Debugging Easy Harder (separate process)
Security Shared memory space Process isolation

When to Use External Plugins

  • Performance-critical tools: Rust/Go for CPU-intensive operations
  • Existing CLI tools: Wrap existing binaries without rewriting
  • Language-specific libraries: Use npm packages, Cargo crates, etc.
  • Team expertise: Let teams use their preferred language

Development

Running Tests

# Run all tests
uv run pytest

# Run with coverage report
uv run pytest --cov=src --cov-report=term-missing

# Run specific test file
uv run pytest tests/test_server.py -v

Linting

# Check for issues
uv run ruff check .

# Auto-fix issues
uv run ruff check --fix .

# Format code
uv run ruff format .

Project Structure

Directory Purpose
src/protocol/ MCP protocol implementation (JSON-RPC, STDIO, lifecycle)
src/plugins/ Plugin system and built-in plugins
src/security/ Security layer (firewall, validation, audit)
tests/ Test suite
config/ Configuration files

MCP Protocol Support

This server implements MCP protocol version 2025-11-25 with support for:

Method Description
initialize Initialize the connection
notifications/initialized Confirm initialization complete
tools/list List available tools
tools/call Execute a tool

Security Considerations

  1. Network Isolation: By default, all external network access is blocked. Only explicitly allowlisted endpoints can be reached.

  2. Path Traversal Protection: All file paths are validated against allowed/denied patterns to prevent accessing sensitive files.

  3. Command Injection Prevention: Commands are sanitized to block dangerous patterns like shell operators.

  4. Rate Limiting: Per-tool rate limits prevent abuse and resource exhaustion.

  5. Audit Trail: All operations are logged with timestamps, request IDs, and sanitized arguments.

License

MIT License - see LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured