MCP Search Server

MCP Search Server

An MCP server that provides semantic search capabilities by integrating with an OpenSearch-based search service. It enables users to perform complex document searches across multiple indices with support for advanced filtering and robust error handling.

Category
Visit Server

README

MCP Search Server

A Model Context Protocol (MCP) server built with FastMCP that provides semantic search capabilities by integrating with an OpenSearch-based search service. This server uses Server-Sent Events (SSE) transport and includes comprehensive validation, error handling, and Docker support.

Features

  • FastMCP Integration: Built on FastMCP framework with SSE transport
  • Pydantic Validation: Comprehensive input/output validation
  • Docker Support: Multi-stage Dockerfile and docker-compose configuration
  • Retry Logic: Automatic retry with exponential backoff
  • Structured Logging: JSON and console logging support
  • Health Checks: Built-in health monitoring
  • Type Safety: Full type hints throughout the codebase
  • Security: Non-root user in Docker container
  • Configurable: Environment-based configuration

Architecture

┌─────────────────┐          ┌──────────────────┐          ┌─────────────────┐
│   MCP Client    │   SSE    │  MCP Search      │   HTTP   │ Search Service  │
│  (Claude/App)   │ ────────►│     Server       │ ────────►│  (OpenSearch)   │
└─────────────────┘          └──────────────────┘          └─────────────────┘
                                      │
                                      │
                                      ▼
                              ┌──────────────┐
                              │  Docker      │
                              │  Network     │
                              │ test_network │
                              └──────────────┘

Prerequisites

  • Python 3.11+
  • Docker and Docker Compose (for containerized deployment)
  • Search service running on search_service:8008 (or configured URL)

Quick Start

Local Development

  1. Clone the repository

    cd d:\projects\DeepResearch\MCPSearch
    
  2. Install dependencies

    pip install -r requirements.txt
    
  3. Configure environment

    cp mcp/.env.example mcp/.env
    # Edit mcp/.env with your configuration
    
  4. Run the server

    cd mcp
    python server.py
    

The server will start on http://0.0.0.0:8080

Docker Deployment

  1. Build and run with Docker Compose

    docker-compose up -d --build
    
  2. Check logs

    docker logs -f mcp_search_server
    
  3. Check health

    curl http://localhost:8080/health
    

Configuration

All configuration is managed through environment variables. Edit mcp/.env or set environment variables directly.

Environment Variables

Variable Default Description
SEARCH_SERVICE_URL http://search_service:8008 Base URL of the search service
SEARCH_TIMEOUT 30 HTTP request timeout in seconds
MCP_SERVER_HOST 0.0.0.0 Server bind address
MCP_SERVER_PORT 8080 Server port
DEFAULT_USER_ID system Default user ID for requests
LOG_LEVEL INFO Logging level (DEBUG, INFO, WARNING, ERROR)
LOG_FORMAT json Log format (json or console)
MAX_RETRIES 3 Maximum retry attempts for failed requests
RETRY_DELAY 1.0 Base delay between retries in seconds

Example .env File

# Search Service Configuration
SEARCH_SERVICE_URL=http://search_service:8008
SEARCH_TIMEOUT=30

# MCP Server Configuration
MCP_SERVER_HOST=0.0.0.0
MCP_SERVER_PORT=8080

# Default Values
DEFAULT_USER_ID=system

# Logging Configuration
LOG_LEVEL=INFO
LOG_FORMAT=json

# Request Configuration
MAX_RETRIES=3
RETRY_DELAY=1.0

Usage

Available Tools

search_documents

Search for documents in OpenSearch indices using the integrated search service.

Parameters:

  • query (string, required): Search query text (minimum 1 character)
  • user_id (string, required): User identifier for tracking
  • indices (array of strings, required): OpenSearch indices to search
  • filters (object, optional): Search filters
    • categories (array of strings): Filter by categories
    • date_from (string): Start date (ISO format)
    • date_to (string): End date (ISO format)
    • tags (array of strings): Filter by tags
    • metadata (object): Additional metadata filters

Returns:

{
  "results": [
    {
      "id": "doc_123",
      "score": 0.95,
      "index": "documents",
      "source": {
        "title": "Document Title",
        "content": "Document content..."
      },
      "highlights": {
        "content": ["...highlighted <em>text</em>..."]
      }
    }
  ],
  "query_expanded": "query with synonyms",
  "processing_time_ms": 45.2,
  "request_id": "req_abc123"
}

Example Usage

Basic Search:

{
  "query": "machine learning",
  "user_id": "user123",
  "indices": ["documents"]
}

Advanced Search with Filters:

{
  "query": "deep learning",
  "user_id": "researcher_001",
  "indices": ["research_papers", "articles"],
  "filters": {
    "categories": ["AI", "Machine Learning"],
    "tags": ["neural-networks", "computer-vision"],
    "date_from": "2023-01-01",
    "date_to": "2024-12-31",
    "metadata": {
      "language": "en",
      "difficulty": "advanced"
    }
  }
}

API Documentation

Search Service Integration

The MCP server communicates with a search service at http://search_service:8008/search (configurable).

Expected Search Service API:

  • Endpoint: POST /search
  • Content-Type: application/json

Request Body:

{
  "query": "search text",
  "user_id": "user_identifier",
  "indices": ["index1", "index2"],
  "filters": {
    "categories": ["category1"],
    "date_from": "2023-01-01",
    "date_to": "2024-12-31",
    "tags": ["tag1", "tag2"],
    "metadata": {}
  }
}

Response Body:

{
  "results": [...],
  "query_expanded": "expanded query",
  "processing_time_ms": 45.2,
  "request_id": "unique_id"
}

Docker

Building the Image

docker build -t mcp-search-server .

Running the Container

docker run -d \
  --name mcp_search_server \
  --network test_network \
  -p 8080:8080 \
  -e SEARCH_SERVICE_URL=http://search_service:8008 \
  mcp-search-server

Docker Compose

The provided docker-compose.yml sets up:

  • MCP Search Server on port 8080
  • Connected to test_network
  • Health checks enabled
  • Automatic restart policy
  • Logging configuration

Start services:

docker-compose up -d

Stop services:

docker-compose down

View logs:

docker-compose logs -f mcp_search_server

Development

Project Structure

MCPSearch/
├── mcp/
│   ├── __init__.py
│   ├── server.py           # Main MCP server implementation
│   ├── config.py           # Configuration management
│   ├── .env                # Environment variables
│   ├── prompts/
│   │   └── search_prompts.md  # Usage examples and documentation
│   └── tools/              # (Reserved for additional tools)
├── requirements.txt        # Python dependencies
├── Dockerfile             # Multi-stage Docker build
├── docker-compose.yml     # Docker orchestration
└── README.md             # This file

Running Tests

# Install dev dependencies
pip install pytest pytest-asyncio httpx

# Run tests (if implemented)
pytest tests/

Code Quality

The codebase follows:

  • PEP 8 style guidelines
  • Type hints throughout
  • Docstrings for all public functions
  • Pydantic for data validation
  • Structured logging with context

Adding New Tools

To add new MCP tools:

  1. Define the tool function in server.py or create a new module in mcp/tools/
  2. Decorate with @mcp.tool()
  3. Add proper type hints and docstrings
  4. Update documentation in prompts/ directory

Example:

@mcp.tool()
async def new_tool(param: str) -> Dict[str, Any]:
    """Tool description.
    
    Args:
        param: Parameter description
        
    Returns:
        Result description
    """
    # Implementation
    return {"result": "data"}

Logging

The server uses structured logging with configurable output format.

JSON Format (default for production):

{
  "timestamp": "2024-01-15T10:30:45.123Z",
  "level": "info",
  "event": "search_request_successful",
  "request_id": "req_123",
  "results_count": 5,
  "processing_time_ms": 45.2
}

Console Format (for development):

2024-01-15 10:30:45 [info] search_request_successful request_id=req_123 results_count=5

Configure via LOG_FORMAT environment variable.

Error Handling

The server implements comprehensive error handling:

Validation Errors

{
  "error": "Validation failed: query must be at least 1 character"
}

HTTP Errors

{
  "error": "Search service returned error 500: Internal Server Error"
}

Connection Errors

{
  "error": "Failed to connect to search service: Connection refused"
}

Retry Logic

  • Automatic retry for 5xx errors and connection failures
  • Exponential backoff: 1s, 2s, 3s
  • Maximum 3 retry attempts (configurable)

Troubleshooting

Server Won't Start

  1. Check if port 8080 is available:

    netstat -ano | findstr :8080  # Windows
    lsof -i :8080                 # Linux/Mac
    
  2. Verify Python version:

    python --version  # Should be 3.11+
    
  3. Check configuration:

    cat mcp/.env
    

Can't Connect to Search Service

  1. Verify search service is running:

    docker ps | grep search_service
    
  2. Check network connectivity:

    docker network inspect test_network
    
  3. Test search service directly:

    curl -X POST http://search_service:8008/search \
      -H "Content-Type: application/json" \
      -d '{"query":"test","user_id":"test","indices":["test"]}'
    

Container Issues

  1. Check container logs:

    docker logs mcp_search_server
    
  2. Inspect container:

    docker inspect mcp_search_server
    
  3. Rebuild image:

    docker-compose down
    docker-compose build --no-cache
    docker-compose up -d
    

Performance

Optimization Tips

  1. Connection Pooling: HTTP client uses connection pooling (max 20 connections)
  2. Timeout Configuration: Adjust SEARCH_TIMEOUT based on search complexity
  3. Retry Strategy: Configure MAX_RETRIES and RETRY_DELAY for your needs
  4. Index Selection: Only search necessary indices to improve performance
  5. Filter Usage: Use filters instead of including criteria in query text

Monitoring

Key metrics to monitor:

  • processing_time_ms in search responses
  • HTTP request/response times
  • Error rates and retry attempts
  • Container resource usage

Security

Best Practices Implemented

  • ✅ Non-root user in Docker container (UID 1000)
  • ✅ No sensitive data in logs
  • ✅ Input validation with Pydantic
  • ✅ Timeout protection against slow requests
  • ✅ Health check endpoints
  • ✅ Minimal container image (python:3.11-slim)

Recommendations

  1. Use HTTPS in production
  2. Implement authentication/authorization
  3. Set up rate limiting
  4. Use secrets management for sensitive config
  5. Regular security updates for dependencies

Contributing

Contributions are welcome! Please follow these guidelines:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes with tests
  4. Update documentation
  5. Submit a pull request

License

[Specify your license here]

Support

For issues and questions:

  1. Check the Troubleshooting section
  2. Review logs: docker logs mcp_search_server
  3. Check search service logs
  4. Open an issue on GitHub

Resources

Changelog

Version 1.0.0 (2024-01-15)

  • Initial release
  • FastMCP integration with SSE transport
  • Search documents tool
  • Pydantic validation
  • Docker support
  • Comprehensive documentation

Built with ❤️ using FastMCP and Python

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured