MCP Search Server
An MCP server that provides semantic search capabilities by integrating with an OpenSearch-based search service. It enables users to perform complex document searches across multiple indices with support for advanced filtering and robust error handling.
README
MCP Search Server
A Model Context Protocol (MCP) server built with FastMCP that provides semantic search capabilities by integrating with an OpenSearch-based search service. This server uses Server-Sent Events (SSE) transport and includes comprehensive validation, error handling, and Docker support.
Features
- ✅ FastMCP Integration: Built on FastMCP framework with SSE transport
- ✅ Pydantic Validation: Comprehensive input/output validation
- ✅ Docker Support: Multi-stage Dockerfile and docker-compose configuration
- ✅ Retry Logic: Automatic retry with exponential backoff
- ✅ Structured Logging: JSON and console logging support
- ✅ Health Checks: Built-in health monitoring
- ✅ Type Safety: Full type hints throughout the codebase
- ✅ Security: Non-root user in Docker container
- ✅ Configurable: Environment-based configuration
Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ MCP Client │ SSE │ MCP Search │ HTTP │ Search Service │
│ (Claude/App) │ ────────►│ Server │ ────────►│ (OpenSearch) │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│
│
▼
┌──────────────┐
│ Docker │
│ Network │
│ test_network │
└──────────────┘
Prerequisites
- Python 3.11+
- Docker and Docker Compose (for containerized deployment)
- Search service running on
search_service:8008(or configured URL)
Quick Start
Local Development
-
Clone the repository
cd d:\projects\DeepResearch\MCPSearch -
Install dependencies
pip install -r requirements.txt -
Configure environment
cp mcp/.env.example mcp/.env # Edit mcp/.env with your configuration -
Run the server
cd mcp python server.py
The server will start on http://0.0.0.0:8080
Docker Deployment
-
Build and run with Docker Compose
docker-compose up -d --build -
Check logs
docker logs -f mcp_search_server -
Check health
curl http://localhost:8080/health
Configuration
All configuration is managed through environment variables. Edit mcp/.env or set environment variables directly.
Environment Variables
| Variable | Default | Description |
|---|---|---|
SEARCH_SERVICE_URL |
http://search_service:8008 |
Base URL of the search service |
SEARCH_TIMEOUT |
30 |
HTTP request timeout in seconds |
MCP_SERVER_HOST |
0.0.0.0 |
Server bind address |
MCP_SERVER_PORT |
8080 |
Server port |
DEFAULT_USER_ID |
system |
Default user ID for requests |
LOG_LEVEL |
INFO |
Logging level (DEBUG, INFO, WARNING, ERROR) |
LOG_FORMAT |
json |
Log format (json or console) |
MAX_RETRIES |
3 |
Maximum retry attempts for failed requests |
RETRY_DELAY |
1.0 |
Base delay between retries in seconds |
Example .env File
# Search Service Configuration
SEARCH_SERVICE_URL=http://search_service:8008
SEARCH_TIMEOUT=30
# MCP Server Configuration
MCP_SERVER_HOST=0.0.0.0
MCP_SERVER_PORT=8080
# Default Values
DEFAULT_USER_ID=system
# Logging Configuration
LOG_LEVEL=INFO
LOG_FORMAT=json
# Request Configuration
MAX_RETRIES=3
RETRY_DELAY=1.0
Usage
Available Tools
search_documents
Search for documents in OpenSearch indices using the integrated search service.
Parameters:
query(string, required): Search query text (minimum 1 character)user_id(string, required): User identifier for trackingindices(array of strings, required): OpenSearch indices to searchfilters(object, optional): Search filterscategories(array of strings): Filter by categoriesdate_from(string): Start date (ISO format)date_to(string): End date (ISO format)tags(array of strings): Filter by tagsmetadata(object): Additional metadata filters
Returns:
{
"results": [
{
"id": "doc_123",
"score": 0.95,
"index": "documents",
"source": {
"title": "Document Title",
"content": "Document content..."
},
"highlights": {
"content": ["...highlighted <em>text</em>..."]
}
}
],
"query_expanded": "query with synonyms",
"processing_time_ms": 45.2,
"request_id": "req_abc123"
}
Example Usage
Basic Search:
{
"query": "machine learning",
"user_id": "user123",
"indices": ["documents"]
}
Advanced Search with Filters:
{
"query": "deep learning",
"user_id": "researcher_001",
"indices": ["research_papers", "articles"],
"filters": {
"categories": ["AI", "Machine Learning"],
"tags": ["neural-networks", "computer-vision"],
"date_from": "2023-01-01",
"date_to": "2024-12-31",
"metadata": {
"language": "en",
"difficulty": "advanced"
}
}
}
API Documentation
Search Service Integration
The MCP server communicates with a search service at http://search_service:8008/search (configurable).
Expected Search Service API:
- Endpoint:
POST /search - Content-Type:
application/json
Request Body:
{
"query": "search text",
"user_id": "user_identifier",
"indices": ["index1", "index2"],
"filters": {
"categories": ["category1"],
"date_from": "2023-01-01",
"date_to": "2024-12-31",
"tags": ["tag1", "tag2"],
"metadata": {}
}
}
Response Body:
{
"results": [...],
"query_expanded": "expanded query",
"processing_time_ms": 45.2,
"request_id": "unique_id"
}
Docker
Building the Image
docker build -t mcp-search-server .
Running the Container
docker run -d \
--name mcp_search_server \
--network test_network \
-p 8080:8080 \
-e SEARCH_SERVICE_URL=http://search_service:8008 \
mcp-search-server
Docker Compose
The provided docker-compose.yml sets up:
- MCP Search Server on port 8080
- Connected to
test_network - Health checks enabled
- Automatic restart policy
- Logging configuration
Start services:
docker-compose up -d
Stop services:
docker-compose down
View logs:
docker-compose logs -f mcp_search_server
Development
Project Structure
MCPSearch/
├── mcp/
│ ├── __init__.py
│ ├── server.py # Main MCP server implementation
│ ├── config.py # Configuration management
│ ├── .env # Environment variables
│ ├── prompts/
│ │ └── search_prompts.md # Usage examples and documentation
│ └── tools/ # (Reserved for additional tools)
├── requirements.txt # Python dependencies
├── Dockerfile # Multi-stage Docker build
├── docker-compose.yml # Docker orchestration
└── README.md # This file
Running Tests
# Install dev dependencies
pip install pytest pytest-asyncio httpx
# Run tests (if implemented)
pytest tests/
Code Quality
The codebase follows:
- PEP 8 style guidelines
- Type hints throughout
- Docstrings for all public functions
- Pydantic for data validation
- Structured logging with context
Adding New Tools
To add new MCP tools:
- Define the tool function in
server.pyor create a new module inmcp/tools/ - Decorate with
@mcp.tool() - Add proper type hints and docstrings
- Update documentation in
prompts/directory
Example:
@mcp.tool()
async def new_tool(param: str) -> Dict[str, Any]:
"""Tool description.
Args:
param: Parameter description
Returns:
Result description
"""
# Implementation
return {"result": "data"}
Logging
The server uses structured logging with configurable output format.
JSON Format (default for production):
{
"timestamp": "2024-01-15T10:30:45.123Z",
"level": "info",
"event": "search_request_successful",
"request_id": "req_123",
"results_count": 5,
"processing_time_ms": 45.2
}
Console Format (for development):
2024-01-15 10:30:45 [info] search_request_successful request_id=req_123 results_count=5
Configure via LOG_FORMAT environment variable.
Error Handling
The server implements comprehensive error handling:
Validation Errors
{
"error": "Validation failed: query must be at least 1 character"
}
HTTP Errors
{
"error": "Search service returned error 500: Internal Server Error"
}
Connection Errors
{
"error": "Failed to connect to search service: Connection refused"
}
Retry Logic
- Automatic retry for 5xx errors and connection failures
- Exponential backoff: 1s, 2s, 3s
- Maximum 3 retry attempts (configurable)
Troubleshooting
Server Won't Start
-
Check if port 8080 is available:
netstat -ano | findstr :8080 # Windows lsof -i :8080 # Linux/Mac -
Verify Python version:
python --version # Should be 3.11+ -
Check configuration:
cat mcp/.env
Can't Connect to Search Service
-
Verify search service is running:
docker ps | grep search_service -
Check network connectivity:
docker network inspect test_network -
Test search service directly:
curl -X POST http://search_service:8008/search \ -H "Content-Type: application/json" \ -d '{"query":"test","user_id":"test","indices":["test"]}'
Container Issues
-
Check container logs:
docker logs mcp_search_server -
Inspect container:
docker inspect mcp_search_server -
Rebuild image:
docker-compose down docker-compose build --no-cache docker-compose up -d
Performance
Optimization Tips
- Connection Pooling: HTTP client uses connection pooling (max 20 connections)
- Timeout Configuration: Adjust
SEARCH_TIMEOUTbased on search complexity - Retry Strategy: Configure
MAX_RETRIESandRETRY_DELAYfor your needs - Index Selection: Only search necessary indices to improve performance
- Filter Usage: Use filters instead of including criteria in query text
Monitoring
Key metrics to monitor:
processing_time_msin search responses- HTTP request/response times
- Error rates and retry attempts
- Container resource usage
Security
Best Practices Implemented
- ✅ Non-root user in Docker container (UID 1000)
- ✅ No sensitive data in logs
- ✅ Input validation with Pydantic
- ✅ Timeout protection against slow requests
- ✅ Health check endpoints
- ✅ Minimal container image (python:3.11-slim)
Recommendations
- Use HTTPS in production
- Implement authentication/authorization
- Set up rate limiting
- Use secrets management for sensitive config
- Regular security updates for dependencies
Contributing
Contributions are welcome! Please follow these guidelines:
- Fork the repository
- Create a feature branch
- Make your changes with tests
- Update documentation
- Submit a pull request
License
[Specify your license here]
Support
For issues and questions:
- Check the Troubleshooting section
- Review logs:
docker logs mcp_search_server - Check search service logs
- Open an issue on GitHub
Resources
- FastMCP Documentation
- Model Context Protocol
- Pydantic Documentation
- OpenSearch Documentation
- Docker Documentation
Changelog
Version 1.0.0 (2024-01-15)
- Initial release
- FastMCP integration with SSE transport
- Search documents tool
- Pydantic validation
- Docker support
- Comprehensive documentation
Built with ❤️ using FastMCP and Python
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.