
mcp-scholar
"mcp\_scholar" is a Python-based tool for searching and analyzing Google Scholar papers, supporting features like keyword-based searches and integration with MCP clients and Cherry Studio. It provides functionalities such as fetching top-cited papers from scholar profiles and summarizing research top
Tools
scholar_search
搜索谷歌学术并返回论文摘要 Args: keywords: 搜索关键词 count: 返回结果数量,默认为5 fuzzy_search: 是否使用模糊搜索,默认为False sort_by: 排序方式,可选值: - "relevance": 按相关性排序(默认) - "citations": 按引用量排序 - "date": 按发表日期排序(新到旧) - "title": 按标题字母顺序排序 year_start: 开始年份,可选 year_end: 结束年份,可选 Returns: Dict: 包含论文列表的字典
adaptive_search
自适应搜索谷歌学术,先尝试精确搜索,如果结果太少则自动切换到模糊搜索 Args: keywords: 搜索关键词 count: 返回结果数量,默认为5 min_results: 最少需要返回的结果数量,少于此数量会触发模糊搜索,默认为3 sort_by: 排序方式,可选值: - "relevance": 按相关性排序(默认) - "citations": 按引用量排序 - "date": 按发表日期排序(新到旧) - "title": 按标题字母顺序排序 year_start: 开始年份,可选 year_end: 结束年份,可选 Returns: Dict: 包含论文列表和搜索模式的字典
paper_detail
获取论文详细信息 Args: paper_id: 论文ID Returns: Dict: 论文详细信息
paper_references
获取引用指定论文的文献列表 Args: paper_id: 论文ID count: 返回结果数量,默认为5 sort_by: 排序方式,可选值: - "relevance": 按相关性排序(默认) - "citations": 按引用量排序 - "date": 按发表日期排序(新到旧) - "title": 按标题字母顺序排序 Returns: Dict: 引用论文列表
profile_papers
获取学者的论文 Args: profile_url: 谷歌学术个人主页URL count: 返回结果数量,默认为5 sort_by: 排序方式,可选值: - "relevance": 按相关性排序(默认) - "citations": 按引用量排序 - "date": 按发表日期排序(新到旧) - "title": 按标题字母顺序排序 Returns: Dict: 论文列表
summarize_papers
搜索并总结特定主题的论文 Args: topic: 研究主题 count: 返回结果数量,默认为5 sort_by: 排序方式,可选值: - "relevance": 按相关性排序(默认) - "citations": 按引用量排序 - "date": 按发表日期排序(新到旧) - "title": 按标题字母顺序排序 year_start: 开始年份,可选 year_end: 结束年份,可选 Returns: str: 论文总结的Markdown格式文本
health_check
健康检查端点,用于验证服务是否正常运行 Returns: str: 服务状态信息
README
MCP Scholar
基于MCP协议的谷歌学术搜索和分析服务。
功能特点
- 谷歌学术论文搜索:根据关键词搜索相关论文,并按引用量排序
- 学者主页分析:分析谷歌学术个人主页,提取引用量最高的论文
- 支持与所有支持MCP客户端集成
- 支持与Cherry Studio集成:可以作为插件在Cherry Studio中使用
安装方法
启动服务器
# 方式一:使用uvx启动
uvx mcp-scholar
# 方式二:clone仓库后使用uv run启动
uv --directory 路径\到\mcp_scholar run mcp-scholar
在Cherry Studio中使用
- 「参照官方教程:https://vaayne.com/posts/2025/mcp-guide 」
示例用法
在Cherry Studio中,可以使用以下提示:
- 「总结5篇关于人工智能的论文」
- 「分析学者主页 https://scholar.google.com/citations?user=xxxxxx 的前10篇高引论文」
开发说明
本项目使用MCP协议开发,基于Python SDK实现。详细信息请参考MCP Python SDK。
许可证
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.