MCP-Saptiva
An MCP server for interacting with Saptiva AI's suite of models, offering capabilities such as chat completions, chain-of-thought reasoning, and OCR. It enables users to generate semantic embeddings, access specialized prompts, and manage AI-driven workflows through a standardized interface.
README
MCP-Saptiva
An MCP (Model Context Protocol) server for interacting with Saptiva AI's LLMs and tools.
Features
- Chat Completions: Access Saptiva's various LLM models
- Reasoning: Chain-of-thought reasoning with Saptiva Cortex
- OCR: Extract text from images using Saptiva OCR
- Embeddings: Generate semantic embeddings for text
- Help System: Built-in documentation and examples
Available Tools
| Tool | Description |
|---|---|
saptiva_chat |
Send chat completion requests to Saptiva AI models |
saptiva_reason |
Complex reasoning with chain-of-thought (Cortex model) |
saptiva_ocr |
Extract text from images using vision model |
saptiva_embed |
Generate semantic embeddings for text |
saptiva_batch_embed |
Batch embedding generation for multiple texts |
saptiva_list_models |
List all available models with pricing |
saptiva_help |
Built-in documentation and examples |
Help Topics
Use saptiva_help with these topics:
| Topic | Description |
|---|---|
quick_start |
Getting started with Saptiva API |
chat_example |
Complete chat request/response example |
reasoning_example |
Using Cortex for reasoning |
ocr_example |
Extracting text from images |
embedding_example |
Generating embeddings |
all_tools |
List of all available tools |
curl_examples |
cURL commands for terminal |
agents_sdk |
Saptiva Agents SDK documentation |
Available Prompts
| Prompt | Description |
|---|---|
code_review |
Review code for bugs and improvements |
explain_concept |
Explain technical concepts at different levels |
write_documentation |
Generate documentation for code |
debug_help |
Help debug errors and issues |
mexican_legal |
Mexican legal/regulatory questions (uses KAL model) |
Available Models
| Model | Best For | Tools Support | Pricing (per M tokens) |
|---|---|---|---|
| Saptiva Turbo | Fast responses, high concurrency | Yes | $0.20 / $0.60 |
| Saptiva Cortex | Reasoning tasks with chain-of-thought | Yes | $0.30 / $0.80 |
| Saptiva Ops | Complex cases, RAG, web search | No | $0.20 / $0.60 |
| Saptiva Legacy | Compatibility with legacy tools | Yes | $0.20 / $0.60 |
| Saptiva OCR | Document text extraction, vision | No | $0.15 / $0.50 |
| Saptiva Embed | Semantic vectorization | N/A | $0.01 / - |
| Saptiva KAL | Mexico-specific context | Yes | $0.20 / $0.60 |
Installation
npm install
npm run build
Configuration
-
Copy
.env.exampleto.env:cp .env.example .env -
Add your Saptiva API key to
.env:SAPTIVA_API_KEY=your_api_key_here -
Get your API key from Saptiva Lab
Usage with Claude Desktop
Add to your Claude Desktop MCP configuration:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"saptiva": {
"command": "node",
"args": ["/path/to/MCP-Saptiva/dist/index.js"],
"env": {
"SAPTIVA_API_KEY": "your_api_key_here"
}
}
}
}
Quick Examples
Chat
{
"model": "Saptiva Turbo",
"messages": [
{"role": "user", "content": "¿Qué es Python?"}
]
}
Reasoning
{
"question": "Si tengo 5 manzanas y como 2, ¿cuántas quedan?",
"max_tokens": 500
}
OCR
{
"image_url": "https://example.com/document.png",
"prompt": "Extrae todo el texto de esta imagen"
}
Embeddings
{
"text": "Texto para convertir a vector"
}
Resources
The server exposes two resources:
saptiva://models- List of all models with capabilitiessaptiva://pricing- Pricing information for all models
Development
# Install dependencies
npm install
# Build
npm run build
# Run tests
node test-comprehensive.mjs
Related Projects
- Saptiva Agents SDK - Python framework for building AI agents
- PyPi Package -
pip install saptiva-agents
Links
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.