MCP Registry

MCP Registry

A central registry MCP server that routes requests to specialized AI services including embeddings, PDF extraction, reranking, vector search (Qdrant), PostgreSQL, LLM completions, markup, and transcription. Includes a proxy server with RAG pipeline for document processing and retrieval.

Category
Visit Server

README

MCP Server

🧩 Main modules

  1. Main MCP server - the core of the system, performing the following functions:
  • Registry of connected servers
  • Routing requests between servers
  • Monitoring server status
  • Aggregation of information about available tools
  1. Specialized servers (connect to the main one):
  • Embedding server - working with vector representations of text
  • PDF extract server - conversion and extraction from PDF to Markdown
  • Reranker server - ranking text data
  • Qdrant server - managing vector collections
  • PostgreSQL server - executing SQL queries and schema inspection
  • LLM server - generating and streaming LLM responses, list of models
  • MarkUp server - text/file markup using markup service methods
  • Transcribe server - audio loading, status and transcription result

⚙️ Available tools

Server Methods
Embedding server embedding_generate, embedding_batch_generate, embedding_get_models, health_check
PDF extract server document_convert_to_markdown, document_get_supported_formats, health_check
Reranker server rerank_documents, health_check
Qdrant server vector_create_collection, vector_get_collection_info, vector_upsert_points, vector_search, vector_delete_points, health_check
PostgreSQL server postgres_execute_query, postgres_get_schema, postgres_create_table, postgres_insert_data, health_check
LLM server llm_chat_completion, llm_get_models, llm_stream_completion, health_check
MarkUp server markup_get_methods, markup_process_text, markup_process_file, health_check
Transcribe server transcribe_audio, transcribe_get_status, transcribe_get_result, health_check
Note:

To add a new FastMCP server, you need to import it in the main_server.py file and place it in the MCP_SERVERS array, after which the main methods of main_server.py will have access to it.

Also a necessary requirement for FastMCP servers is the presence of the health_check method to check the state.

📡 Main server methods

get_server_and_tools() # Get a list of all servers and tools
router(server_name, tool_name, params) # Routing requests
health_check_servers() # Checking the health of all servers

Setting up the environment

Create a .env file in the root of the project and put the following environment variables in it (the list corresponds to the use in the code):

# Main server
MAIN_SERVER_API_KEY=...

# Embedding server
EMBEDDING_API_KEY=...
EMBEDDING_URL=...
EMBEDDING_MODEL_NAME=...
EMBEDDING_URL_MODELS=...
EMBEDDING_HEALTH_URL=...

# PDF extract server
PDF_EXTRACTOR_URL=...
PDF_HEALTH_URL=...

# Reranker server
RERANK_URL=...
RERANK_MODEL=...
RERANK_HEALTH_URL=...

# Qdrant server
QDRANT_URL=...
QDRANT_API_KEY=...
QDRANT_HEALTH_CHECK_URL=...

# PostgreSQL server
POSTGRES_USER=...
POSTGRES_PASSWORD=...
POSTGRES_HOST=...
POSTGRES_DB=...

#LLM server
LLM_SERVICE_API_KEY=...
LLM_SERVICE_MODEL=...
LLM_SERVICE_CHAT_COMPLETIONS_URL=...
LLM_SERVICE_MODELS_URL=...
LLM_SERVICE_COMPLETIONS_URL=...
LLM_SERVICE_HEALTH_URL=...

# MarkUp server
MARKUP_API_KEY=...
MARKUP_GET_METHODS_URL=...
MARKUP_PROCESS_TEXT_URL=...
MARKUP_PROCESS_FILE_URL=...
MARKUP_HEALTH_CHECK_URL=...

# Transcribe server
TRANSCRIBE_API_KEY=...
TRANSCRIBE_UPLOAD_AUDIO=...
TRANSCRIBE_HEALTH_URL=...

Start the main server

Installation dependencies and creating a virtual environment

Before starting the server, it is recommended to create a virtual environment and install all dependencies from requirements.txt. Run the following commands in the terminal:

  1. Creating a virtual environment
python -m venv venv
  1. Activating the environment
./venv/Scripts/activate
  1. Installing dependencies
pip install -r requirements.txt

After setting up the environment, the server is started with the command

fastmcp run ./main_server.py:main_mcp_server --transport http

Running in Docker

  1. Build the image:
docker build -t mcp-main-server .
  1. Run the container, passing .env as environment variables:
docker run --rm -p 8000:8000 --env-file .env mcp-main-server

Configuring the server connection in Cursor

  1. Run the server using the command above

  2. Open the settings

  3. Add the MCP server configuration:

{
"mcpServers": {
"main-registry": {
   "url": "http://localhost:8000/mcp/"
}}}

Local MCP server: proxy_mcp_server

  • What is it: proxy MCP server that connects to the main registry (main_server) and forwards its methods, and provides a high-level pipeline for pre-preparing data for RAG.
  • Where is it: proxy_mcp_server/proxy_mcp_server.py
  • Available tools:
  • get_server_and_tools() — get a list of servers and their tools from the registry
  • router(server_name: str, tool_name: str, params: dict) — universal call router
  • preprocessing_data_for_rag(file_paths: List[str]) -> str — prepare PDF/texts and create a collection in Qdrant; returns the collection name
  • health_check_servers() — check if all services are available

Requirements:

  • main_server is running and accessible via URL (e.g. http://localhost:8000/mcp/).
  • Valid API key MAIN_SERVER_API_KEY (must match Authorization header in proxy_mcp_server.py).
  • Update url and headers.Authorization in config object inside proxy_mcp_server/proxy_mcp_server.py if necessary.

Connection in Cursor (example):

{
"mcpServers": {
"proxy-server": {
"command": "uv",
"args": [
"run",
"fastmcp",
"run",
"YOUR_PATH_TO/proxy_mcp_server/proxy_mcp_server.py:proxy_mcp_server"]
}}}

Launch from terminal:

fastmcp run ./proxy_mcp_server/proxy_mcp_server.py:proxy_mcp_server

RAG inference: interactive launch

  • What is this: console assistant for asking questions to a collection of documents in Qdrant with additional ranking and generation of LLM response.
  • Location: rag_inference/RAG workflow.py
  • Preliminary environment variables: QDRANT_URL, QDRANT_API_KEY, RERANK_URL, RERANK_MODEL, LLM_SERVICE_CHAT_COMPLETIONS_URL, LLM_SERVICE_API_KEY, LLM_SERVICE_MODEL, EMBEDDING_URL, EMBEDDING_MODEL are used (described above in the settings section).

Run (Windows PowerShell):

python ".\rag_inference\RAG workflow.py" <collection_name>

Where <collection_name> is the name of the collection in Qdrant. It is convenient to get it in advance by calling the preprocessing_data_for_rag tool from proxy_mcp_server and passing a list of files to index; the method will return the name of the created collection.

Example:

python ".\rag_inference\RAG workflow.py" collection_for_rag_1

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured