MCP Reasoning Engine
A production-ready reasoning engine that integrates Claude AI with specialized MCP tools for knowledge retrieval, schema validation, and domain-specific rubric evaluation. It enables structured RAG-based analysis across legal, health, and science domains via a RESTful API.
README
MCP Reasoning Engine with Claude Agent
A production-ready reasoning engine that combines Claude AI with Model Context Protocol (MCP) tools for structured reasoning across legal, health, and science domains.
Features
- š¤ Claude Agent Integration: Uses Anthropic's Claude API with tool use capabilities
- š§ MCP Tools: Three specialized tools for knowledge search, schema validation, and rubric evaluation
- š RAG Integration: Knowledge base search across domain-specific documents
- ā Schema Validation: Ensures structured JSON output matches required schemas
- š Rubric Scoring: Domain-specific evaluation with pass/fail thresholds
- š HTTP API: RESTful API for easy integration
- š³ Docker Ready: Containerized deployment support
Architecture
āāāāāāāāāāāāāāāāāāā
ā HTTP API ā (Optional - mcp_api_server.py)
ā or Direct ā
āāāāāāāāāā¬āāāāāāāāā
ā
ā¼
āāāāāāāāāāāāāāāāāāā āāāāāāāāāāāāāāāā
ā Claude Agent āāāāāāāŗā MCP Server ā
ā claude_agent.py ā ā server.py ā
āāāāāāāāāā¬āāāāāāāāā āāāāāāāā¬āāāāāāāā
ā ā
ā¼ ā¼
āāāāāāāāāāāāāāāāāāā āāāāāāāāāāāāāāāā
ā Anthropic API ā ā RAG Tools ā
ā (Claude) ā ā Validators ā
āāāāāāāāāāāāāāāāāāā āāāāāāāāāāāāāāāā
Quick Start
Prerequisites
- Python 3.8+
- Anthropic API key (Get one here)
Installation
-
Clone or extract the project
cd reasoning_engine_mcp_demo -
Create virtual environment
python -m venv .venv # Windows .venv\Scripts\activate # Linux/Mac source .venv/bin/activate -
Install dependencies
pip install -r requirements.txt -
Set API key
# Windows PowerShell $env:ANTHROPIC_API_KEY = "your_api_key_here" # Linux/Mac export ANTHROPIC_API_KEY="your_api_key_here"
Usage
Option 1: Direct Python Usage
import asyncio
from mcp.claude_agent import ClaudeReasoningAgent
async def main():
agent = ClaudeReasoningAgent()
result = await agent.reason("Is a verbal promise enforceable?")
print(result)
asyncio.run(main())
Option 2: Command Line
python -m mcp.claude_agent --question "Your question here"
Option 3: HTTP API Server
# Start server
python mcp_api_server.py
# Server runs on http://localhost:8000
# API docs: http://localhost:8000/docs
API Example:
curl -X POST http://localhost:8000/reason \
-H "Content-Type: application/json" \
-d '{"question": "Is a verbal promise enforceable?"}'
Project Structure
reasoning_engine_mcp_demo/
āāā mcp/ # MCP server and agent
ā āāā server.py # MCP server with 3 tools
ā āāā claude_agent.py # Claude agent with MCP integration
ā āāā DEPLOYMENT.md # Deployment guide
āāā rag_docs/ # Knowledge base documents
ā āāā legal/ # Legal domain documents
ā āāā health/ # Health domain documents
ā āāā science/ # Science domain documents
āāā domains/ # Domain configurations
ā āāā domain_config.json # Domain routing config
ā āāā legal/rubric.json # Legal rubric
ā āāā health/rubric.json # Health rubric
ā āāā science/rubric.json # Science rubric
āāā schemas/ # JSON schemas
ā āāā universal_reasoning_schema.json
āāā validators/ # Validation modules
ā āāā schema_validator.py
ā āāā rubric_validator.py
āāā tools_rag.py # RAG search implementation
āāā router.py # Domain routing
āāā mcp_api_server.py # HTTP API server
āāā requirements.txt # Python dependencies
āāā README.md # This file
MCP Tools
The MCP server exposes three tools:
-
search_knowledge_base(query: str)
- Searches RAG documents for relevant information
- Returns formatted results with source, title, and content
-
validate_reasoning_schema(output_json: str)
- Validates JSON output against the universal reasoning schema
- Returns validation status and errors
-
evaluate_with_rubric(domain: str, output_json: str)
- Evaluates reasoning output against domain-specific rubric
- Returns scores, pass/fail status, and human review flags
Domains
The system supports three domains:
- Legal: Contract law, enforceability, legal reasoning
- Health: Medical information, symptoms, safety boundaries
- Science: Scientific reasoning, hypotheses, evidence evaluation
Each domain has:
- Domain-specific RAG documents
- Custom rubric for evaluation
- Keyword-based routing
Configuration
Environment Variables
ANTHROPIC_API_KEY(required): Your Anthropic API keyMCP_PORT(optional): HTTP API port (default: 8000)MCP_HOST(optional): HTTP API host (default: 0.0.0.0)
Model Selection
Default model: claude-3-haiku-20240307
To use a different model:
agent = ClaudeReasoningAgent(model="claude-3-sonnet-20240229")
Available models:
claude-3-haiku-20240307(fast, cost-effective)claude-3-sonnet-20240229(balanced)claude-3-opus-20240229(most capable)
API Documentation
When running the HTTP API server, visit:
- Swagger UI: http://localhost:8000/docs
- ReDoc: http://localhost:8000/redoc
Endpoints
GET /- API informationGET /health- Health checkGET /tools- List available MCP toolsPOST /reason- Process a reasoning question
Testing
# Test MCP server tools
python test_mcp_server.py
# Test with Claude
python test_mcp_server.py --with-claude
# Run all test cases
python run_all_tests.py
Deployment
See mcp/DEPLOYMENT.md for detailed deployment instructions including:
- Local deployment
- Docker containerization
- Cloud deployment (AWS, Azure, GCP)
- Production best practices
Security Notes
- API Keys: Never commit API keys to version control
- Health Domain: Always requires human review (configured in rubric)
- Input Validation: All inputs are validated before processing
- HTTPS: Use HTTPS in production environments
Troubleshooting
"ANTHROPIC_API_KEY not found"
- Ensure environment variable is set in your shell session
- Check that it's set before running Python scripts
"ModuleNotFoundError: No module named 'mcp.claude_agent'"
- This is a namespace conflict with the
mcppackage - The code handles this automatically via importlib
- If issues persist, check Python path configuration
"Model not found" errors
- Verify your API key has access to the requested model
- Try using
claude-3-haiku-20240307(most widely available)
Support
For issues or questions, please refer to:
mcp/DEPLOYMENT.md- Deployment guideDEPLOYMENT_GUIDE.md- Detailed deployment options- API documentation at
/docsendpoint
Changelog
Version 1.0.0
- Initial release
- MCP server with 3 tools
- Claude agent integration
- HTTP API server
- Domain routing and rubric evaluation
- Full test suite# MCP
MCP
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.