MCP RAG System

MCP RAG System

A Retrieval-Augmented Generation system that enables uploading, processing, and semantic search of PDF documents using vector embeddings and FAISS indexing for context-aware question answering.

Category
Visit Server

README

MCP RAG System

A comprehensive Retrieval-Augmented Generation (RAG) system built using the Model Context Protocol (MCP) for storing, processing, and searching PDF documents.

Features

šŸ”§ Tools

  • upload_pdf: Upload and process PDF files with automatic text extraction and chunking
  • search_documents: Semantic search across all uploaded documents using vector embeddings
  • list_documents: View all uploaded documents and their metadata
  • delete_document: Remove documents and their associated chunks from the system
  • get_rag_stats: Get comprehensive statistics about the RAG system

šŸ“¦ Resources

  • rag://documents: List all documents in the system
  • rag://document/{document_id}: Get full content of a specific document
  • rag://stats: Get system statistics

šŸ’¬ Prompts

  • rag_query_prompt: Generate prompts for RAG-based question answering
  • document_summary_prompt: Create document summarization prompts
  • search_suggestions_prompt: Generate better search query suggestions

Installation

  1. Install dependencies:

    pip install -r requirements.txt
    
  2. Download required models: The system will automatically download the sentence-transformers model on first use.

Usage

Starting the Server

python mcp_server.py

The server will start on http://localhost:8000 with SSE (Server-Sent Events) transport.

Using the Client

Demo Mode

python mcp_client.py
# Choose option 1 for demo mode

Interactive Mode

python mcp_client.py
# Choose option 2 for interactive mode

Available commands in interactive mode:

  • upload - Upload a PDF file
  • search - Search documents with a query
  • list - List all uploaded documents
  • stats - Show system statistics
  • quit - Exit the client

Example Workflow

  1. Upload a PDF:

    # Via tool call
    result = await session.call_tool("upload_pdf", arguments={
        "file_path": "/path/to/document.pdf",
        "document_name": "My Research Paper"
    })
    
  2. Search documents:

    # Via tool call
    result = await session.call_tool("search_documents", arguments={
        "query": "machine learning applications",
        "top_k": 5
    })
    
  3. Use RAG prompt:

    # Get search results first, then use in prompt
    prompt = await session.get_prompt("rag_query_prompt", arguments={
        "query": "What are the key findings?",
        "context_chunks": search_results_text
    })
    

System Architecture

Document Processing Pipeline

  1. PDF Upload → Text extraction using PyMuPDF/PyPDF2
  2. Text Chunking → Split into overlapping chunks (1000 chars, 200 overlap)
  3. Embedding Generation → Create vector embeddings using SentenceTransformers
  4. Storage → Store in FAISS index with metadata

Storage Structure

rag_storage/
ā”œā”€ā”€ documents/          # Original extracted text
ā”œā”€ā”€ chunks/            # Individual text chunks
ā”œā”€ā”€ embeddings/        # Numpy arrays of embeddings
ā”œā”€ā”€ faiss_index.bin    # FAISS vector index
└── metadata.json      # Document and chunk metadata

Vector Search

  • Model: all-MiniLM-L6-v2 (384-dimensional embeddings)
  • Index: FAISS IndexFlatIP (Inner Product similarity)
  • Search: Cosine similarity for semantic matching

Configuration

Chunk Settings

Modify in mcp_server.py:

def _create_text_chunks(text: str, chunk_size: int = 1000, overlap: int = 200):

Embedding Model

Change the model in RAGSystem.__init__():

self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

Storage Location

Set custom storage directory:

rag_system = RAGSystem(storage_dir="custom_rag_storage")

API Reference

Tools

upload_pdf

  • Parameters: file_path (str), document_name (optional str)
  • Returns: Document ID, chunk count, success status

search_documents

  • Parameters: query (str), top_k (optional int, default 5)
  • Returns: Ranked list of relevant chunks with scores

list_documents

  • Parameters: None
  • Returns: List of all documents with metadata

delete_document

  • Parameters: document_id (str)
  • Returns: Success status and confirmation message

get_rag_stats

  • Parameters: None
  • Returns: System statistics (documents, chunks, storage size)

Resources

rag://documents

Returns formatted list of all documents in the system.

rag://document/{document_id}

Returns full text content of specified document with metadata header.

rag://stats

Returns formatted system statistics.

Prompts

rag_query_prompt

  • Parameters: query (str), context_chunks (str)
  • Returns: Structured prompt for RAG-based QA

document_summary_prompt

  • Parameters: document_content (str)
  • Returns: Prompt for document summarization

search_suggestions_prompt

  • Parameters: query (str), available_documents (str)
  • Returns: Prompt for generating better search queries

Performance Considerations

Memory Usage

  • Embeddings: ~1.5KB per chunk (384 float32 values)
  • FAISS index: Scales linearly with number of chunks
  • Text storage: Depends on document size and chunking

Search Speed

  • FAISS IndexFlatIP: O(n) search time
  • For large collections, consider IndexIVFFlat or IndexHNSW

Optimization Tips

  1. Batch uploads for multiple documents
  2. Adjust chunk size based on document type
  3. Use GPU with faiss-gpu for large datasets
  4. Implement caching for frequent queries

Troubleshooting

Common Issues

  1. PDF text extraction fails:

    • Ensure PDF is not password-protected
    • Try different PDF files to isolate the issue
    • Check PyMuPDF and PyPDF2 installation
  2. Memory errors with large documents:

    • Reduce chunk size
    • Process documents in batches
    • Monitor system memory usage
  3. Search returns no results:

    • Verify documents are uploaded successfully
    • Check query similarity to document content
    • Try broader search terms
  4. Server connection issues:

    • Ensure server is running on correct port
    • Check firewall settings
    • Verify MCP client configuration

Debug Mode

Enable detailed logging by modifying the server:

import logging
logging.basicConfig(level=logging.DEBUG)

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Submit a pull request

License

This project is licensed under the MIT License. #ļæ½ ļæ½Mļæ½Cļæ½Pļæ½ ļæ½ ļæ½

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured