MCP RAG Server
Enables AI assistants to search and retrieve information from your knowledge base using RAG (Retrieval-Augmented Generation) with hybrid search, document indexing, and ChromaDB vector storage.
README
MCP RAG Server
An MCP (Model Context Protocol) server that exposes RAG capabilities to Claude Code and other MCP clients.
This is a standalone extraction from my production portfolio site. See it in action at danmonteiro.com.
The Problem
You're using Claude Code but:
- No access to your documents — Claude can't search your knowledge base
- Context is manual — you're copy-pasting relevant docs into prompts
- RAG is disconnected — your vector database isn't accessible to AI tools
- Integration is custom — every project builds its own RAG bridge
The Solution
MCP RAG Server provides:
- Standard MCP interface — works with Claude Code, Claude Desktop, and any MCP client
- Full RAG pipeline — hybrid search, query expansion, semantic chunking built-in
- Simple tools —
rag_query,rag_search,index_document,get_stats - Zero config — point at ChromaDB and go
# In Claude Code, after configuring the server:
"Search my knowledge base for articles about RAG architecture"
# Claude automatically uses rag_query tool and gets relevant context
Results
From production usage:
| Without MCP RAG | With MCP RAG |
|---|---|
| Manual context copy-paste | Automatic retrieval |
| No document search | Hybrid search built-in |
| Static knowledge | Live vector database |
| Custom integration per project | Standard MCP protocol |
Design Philosophy
Why MCP?
MCP (Model Context Protocol) standardizes how AI applications connect to external tools:
┌──────────────┐ MCP Protocol ┌──────────────┐
│ MCP Client │◀────────────────────▶│ MCP Server │
│ (Claude Code)│ │ (This repo) │
└──────────────┘ └──────────────┘
│
┌──────▼──────┐
│ RAG Pipeline │
│ (ChromaDB) │
└─────────────┘
Instead of building custom integrations, MCP provides a universal interface that any MCP-compatible client can use.
Tools Exposed
| Tool | Description |
|---|---|
rag_query |
Query with hybrid search, returns formatted context |
rag_search |
Raw similarity search, returns chunks with scores |
index_document |
Add a single document |
index_documents_batch |
Batch index multiple documents |
delete_by_source |
Delete all docs from a source |
get_stats |
Collection statistics |
clear_collection |
Clear all data (requires confirmation) |
Quick Start
1. Prerequisites
# Start ChromaDB
docker run -p 8000:8000 chromadb/chroma
# Set OpenAI API key (for embeddings)
export OPENAI_API_KEY="sk-..."
2. Install & Build
git clone https://github.com/0xrdan/mcp-rag-server.git
cd mcp-rag-server
npm install
npm run build
3. Configure Claude Code
Add to your Claude Code MCP configuration (~/.claude/mcp.json or project .mcp.json):
{
"mcpServers": {
"rag": {
"command": "node",
"args": ["/path/to/mcp-rag-server/dist/server.js"],
"env": {
"OPENAI_API_KEY": "sk-...",
"CHROMA_URL": "http://localhost:8000",
"CHROMA_COLLECTION": "my_knowledge_base"
}
}
}
}
4. Use in Claude Code
# Restart Claude Code to load the server
claude
# Now Claude has access to RAG tools:
"Index this document into my knowledge base: [paste content]"
"Search for information about transformer architectures"
"What do my docs say about error handling?"
API Reference
rag_query
Query the knowledge base with hybrid search. Returns formatted context suitable for LLM prompts.
// Input
{
question: string; // Required: the question to search for
topK?: number; // Optional: number of results (default: 5)
threshold?: number; // Optional: min similarity 0-1 (default: 0.5)
filters?: object; // Optional: metadata filters
}
// Output
{
context: string; // Formatted context for LLM
chunks: [{
content: string;
score: number;
metadata: object;
}];
stats: {
totalChunks: number;
avgSimilarity: number;
};
}
rag_search
Raw similarity search without context formatting.
// Input
{
query: string; // Required: search query
topK?: number; // Optional: number of results (default: 10)
filters?: object; // Optional: metadata filters
}
// Output: Array of chunks with scores
index_document
Add a document to the knowledge base.
// Input
{
id: string; // Required: unique identifier
title: string; // Required: document title
content: string; // Required: document content
source: string; // Required: source identifier
category?: string; // Optional: category
tags?: string[]; // Optional: tags array
}
// Output
{
success: boolean;
documentId: string;
chunksIndexed: number;
}
get_stats
Get collection statistics.
// Output
{
totalChunks: number;
totalDocuments: number;
// ... other stats from RAG pipeline
}
Configuration
Environment Variables
| Variable | Required | Default | Description |
|---|---|---|---|
OPENAI_API_KEY |
Yes | - | OpenAI API key for embeddings |
CHROMA_URL |
No | http://localhost:8000 |
ChromaDB URL |
CHROMA_COLLECTION |
No | mcp_knowledge_base |
Collection name |
EMBEDDING_MODEL |
No | text-embedding-3-large |
Embedding model |
EMBEDDING_DIMENSIONS |
No | Native | Reduced dimensions |
Project Structure
mcp-rag-server/
├── src/
│ ├── server.ts # Main MCP server implementation
│ └── index.ts # Exports
├── mcp-config.example.json # Example Claude Code configuration
├── package.json
└── README.md
Advanced Usage
Programmatic Server Creation
import { createServer } from 'mcp-rag-server';
const server = await createServer({
vectorDB: {
host: 'http://custom-chroma:8000',
collectionName: 'my_collection',
},
rag: {
topK: 10,
enableHybridSearch: true,
},
});
Using with Claude Desktop
Same configuration works with Claude Desktop's MCP support:
// ~/Library/Application Support/Claude/claude_desktop_config.json (macOS)
{
"mcpServers": {
"rag": {
"command": "node",
"args": ["/path/to/mcp-rag-server/dist/server.js"]
}
}
}
Part of the Context Continuity Stack
This repo exposes context continuity as a protocol-level capability — giving any MCP client access to persistent semantic memory.
| Layer | Role | This Repo |
|---|---|---|
| Intra-session | Short-term memory | — |
| Document-scoped | Injected content | — |
| Retrieved | Long-term semantic memory via MCP | mcp-rag-server |
| Progressive | Staged responses | — |
MCP RAG Server bridges the gap between vector databases and AI assistants. Instead of building custom integrations, any MCP-compatible tool (Claude Code, Claude Desktop, custom clients) gets instant access to your knowledge base.
Related repos:
- rag-pipeline — The underlying RAG implementation
- mcp-client-example — Reference client for connecting to this server
- chatbot-widget — Session cache, Research Mode, conversation export
- ai-orchestrator — Multi-model LLM routing
Contributing
Contributions welcome! Please:
- Fork the repository
- Create a feature branch (
git checkout -b feat/add-new-tool) - Make changes with semantic commits
- Open a PR with clear description
License
MIT License - see LICENSE for details.
Acknowledgments
Built with Claude Code.
Co-Authored-By: Claude <noreply@anthropic.com>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.