MCP-RAG

MCP-RAG

An MCP-compatible system that handles large files (up to 200MB) with intelligent chunking and multi-format document support for advanced retrieval-augmented generation.

Category
Visit Server

README

📚 MCP-RAG

MCP-RAG system built with the Model Context Protocol (MCP) that handles large files (up to 200MB) using intelligent chunking strategies, multi-format document support, and enterprise-grade reliability.

Python 3.11+ License: MIT MCP

🌟 Features

📄 Multi-Format Document Support

  • PDF: Intelligent page-by-page processing with table detection
  • DOCX: Paragraph and table extraction with formatting preservation
  • Excel: Sheet-aware processing with column context (.xlsx/.xls)
  • CSV: Smart row batching with header preservation
  • PPTX: Support for PPTX
  • IMAGE: Suppport for jpeg , png , webp , gif etc and OCR

🚀 Large File Processing

  • Adaptive chunking: Different strategies based on file size
  • Memory management: Streaming processing for 50MB+ files
  • Progress tracking: Real-time progress indicators
  • Timeout handling: Graceful handling of long-running operations

🧠 Advanced RAG Capabilities

  • Semantic search: Vector similarity with confidence scores
  • Cross-document queries: Search across multiple documents simultaneously
  • Source attribution: Citations with similarity scores
  • Hybrid retrieval: Combine semantic and keyword search

🔌 Model Context Protocol (MCP) Integration

  • Universal tool interface: Standardized AI-to-tool communication
  • Auto-discovery: LangChain agents automatically find and use tools
  • Secure communication: Built-in permission controls
  • Extensible architecture: Easy to add new document processors

🏢 Enterprise Ready

  • Custom LLM endpoints: Support for any OpenAI-compatible API
  • Vector database options: ChromaDB (local) + Milvus (production)
  • Batch processing: Handles API rate limits and batch size constraints
  • Error recovery: Retry logic and graceful degradation

🏗️ Architecture

┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐ │ Streamlit │ │ LangChain │ │ MCP Server │ │ Frontend │◄──►│ Agent │◄──►│ (Tools) │ └─────────────────┘ └──────────────────┘ └─────────────────┘ │ ┌────────────────────────┼────────────────────────┐ │ ▼ │ ┌───────▼────────┐ ┌─────────────────┐ ┌──────▼──────┐ │ Document │ │ Vector Database │ │ LLM API │ │ Processors │ │ (ChromaDB) │ │ Endpoint │ └────────────────┘ └─────────────────┘ └─────────────┘

🚀 Quick Start

Prerequisites

  • Python 3.11+
  • OpenAI API key or compatible LLM endpoint
  • 8GB+ RAM (for large file processing)

Installation

Clone the repository

git clone https://github.com/yourusername/rag-large-file-processor.git
cd rag-large-file-processor

python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

pip install -r requirements.txt

# Create .env file
cat > .env << EOF
OPENAI_API_KEY=your_openai_api_key_here
BASE_URL=https://api.openai.com/v1
MODEL_NAME=gpt-4o
VECTOR_DB_TYPE=chromadb


streamlit run streamlit_app.py

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured