mcp-plots
A MCP server for data visualization. It exposes tools to render charts (line, bar, pie, scatter, heatmap, etc.) from data and returns plots as either image/text/mermaid diagram.
README
<div align="center">
<h1>Plots MCP Server</h1>
<a href="https://glama.ai/mcp/servers/@MR901/mcp-plots"> <img width="285" height="150" src="https://glama.ai/mcp/servers/@MR901/mcp-plots/badge" /> </a>
</div>
<br> A Model Context Protocol (MCP) server for data visualization. It exposes tools to render charts (line, bar, pie, scatter, heatmap, etc.) from data and returns the plot as image/base64 text/mermaid diagram.
<!-- mcp-name: io.github.MR901/mcp-plots -->
Why MCP Plots?
- Instant, visual-first charts using Mermaid (renders directly in MCP clients like Cursor)
 - Simple prompts to generate charts from plain data
 - Zero-setup options via uvx, or install from PyPI/Docker
 - Flexible output formats: mermaid (default), PNG image, or text
 
Quick Usage
- Ask your MCP client: "Create a bar chart showing sales: A=100, B=150, C=80"
 - Default output is Mermaid, so diagrams render instantly in Cursor
 
Quick Start
PyPI Installation (Recommended)
pip install mcp-plots
mcp-plots  # Start the server
For Cursor Users
- Install the package: 
pip install mcp-plots - Add to your Cursor MCP config (
~/.cursor/mcp.json):Alternative (zero-install via uvx + PyPI):{ "mcpServers": { "plots": { "command": "mcp-plots", "args": ["--transport", "stdio"] } } }{ "mcpServers": { "plots": { "command": "uvx", "args": ["mcp-plots", "--transport", "stdio"] } } } - Restart Cursor
 - Ask: "Create a bar chart showing sales: A=100, B=150, C=80"
 
Development Installation
uvx --from git+https://github.com/mr901/mcp-plots.git run-server.py
Documentation → | Quick Start → | API Reference →
MCP Registry
This server is published under the MCP registry identifier io.github.MR901/mcp-plots. You can discover/verify it via the official registry API:
curl "https://registry.modelcontextprotocol.io/v0/servers?search=io.github.MR901/mcp-plots"
Registry metadata for this project is tracked in server.json.
Install with Smithery
This repository includes a smithery.yaml for easy setup with Smithery.
- File: 
smithery.yaml - Docs: https://smithery.ai/docs/config#smitheryyaml
 
Example install using the Smithery CLI (adjust --client as needed, e.g. cursor, claude):
npx -y @smithery/cli install \
  https://raw.githubusercontent.com/mr901/mcp-plots/main/smithery.yaml \
  --client cursor
After installation, your MCP client should be able to start the server over stdio using the command defined in smithery.yaml.
Project layout
src/
  app/                # Server construction and runtime
    server.py
  capabilities/       # MCP tools and prompts
    tools.py
    prompts.py
  visualization/      # Plotting engines and configurations
    chart_config.py
    generator.py
Requirements
- Python 3.10+
 - See 
requirements.txt 
Setup Routes
uvx (Recommended)
The easiest way to run the MCP server without managing Python environments:
# Run directly with uvx (no installation needed)
uvx --from git+https://github.com/mr901/mcp-plots.git run-server.py
# Or install and run the command
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots
# With custom options
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --port 8080 --log-level DEBUG
Why uvx?
- No Environment Management: Automatically handles Python dependencies
 - Isolated Execution: Runs in its own virtual environment
 - Always Latest: Pulls fresh code from repository
 - Zero Setup: Works immediately without pip install
 - Cross-Platform: Same command works on Windows, macOS, Linux
 
PyPI (Traditional Installation)
- Install dependencies
 
pip install -r requirements.txt
- Run the server (HTTP transport, default port 8000)
 
python -m src --transport streamable-http --host 0.0.0.0 --port 8000 --log-level INFO
- Run with stdio (for MCP clients that spawn processes)
 
python -m src --transport stdio
Local Development (from source)
git clone https://github.com/mr901/mcp-plots.git
cd mcp-plots
pip install -e .
python -m src --transport stdio --log-level DEBUG
Docker
docker build -t mcp-plots .
docker run -p 8000:8000 mcp-plots
Environment variables (optional):
MCP_TRANSPORT(streamable-http|stdio)MCP_HOST(default 0.0.0.0)MCP_PORT(default 8000)LOG_LEVEL(default INFO)
Tools
list_chart_types()→ returns available chart typeslist_themes()→ returns available themessuggest_fields(sample_rows)→ suggests field roles based on data samplesrender_chart(chart_type, data, field_map, config_overrides?, options?, output_format?)→ returns MCP contentgenerate_test_image()→ generates a test image (red circle) to verify MCP image support
Cursor Integration
This MCP server is fully compatible with Cursor's image support! When you use the render_chart tool:
- Charts appear directly in chat - No need to save files or open separate windows
 - AI can analyze your charts - Vision-enabled models can discuss and interpret your visualizations
 - Perfect MCP format - Uses the exact base64 PNG format that Cursor expects
 
The server returns images in the MCP format Cursor requires:
{
  "content": [
    {
      "type": "image", 
      "data": "<base64-encoded-png>",
      "mimeType": "image/png"
    }
  ]
}
Example call (pseudo):
render_chart(
  chart_type="bar",
  data=[{"category":"A","value":10},{"category":"B","value":20}],
  field_map={"category_field":"category","value_field":"value"},
  config_overrides={"title":"Example Bar","width":800,"height":600,"output_format":"MCP_IMAGE"}
)
Return shape (PNG):
{
  "status": "success",
  "content": [{"type":"image","data":"<base64>","mimeType":"image/png"}]
}
Configuration
The server can be configured via environment variables or command line arguments:
Server Settings
MCP_TRANSPORT- Transport type:streamable-httporstdio(default:streamable-http)MCP_HOST- Host address (default:0.0.0.0)MCP_PORT- Port number (default:8000)LOG_LEVEL- Logging level:DEBUG,INFO,WARNING,ERROR,CRITICAL(default:INFO)MCP_DEBUG- Enable debug mode:trueorfalse(default:false)
Chart Settings
CHART_DEFAULT_WIDTH- Default chart width in pixels (default:800)CHART_DEFAULT_HEIGHT- Default chart height in pixels (default:600)CHART_DEFAULT_DPI- Default chart DPI (default:100)CHART_MAX_DATA_POINTS- Maximum data points per chart (default:10000)
Command Line Usage
With uvx (recommended):
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --help
# Examples:
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --port 8080 --log-level DEBUG
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --chart-width 1200 --chart-height 800
Traditional Python:
python -m src --help
# Examples:
python -m src --transport streamable-http --host 0.0.0.0 --port 8000
python -m src --log-level DEBUG --chart-width 1200 --chart-height 800
Docker
Build image:
docker build -t mcp-plots .
Run container with custom configuration:
docker run --rm -p 8000:8000 \
  -e MCP_TRANSPORT=streamable-http \
  -e MCP_HOST=0.0.0.0 \
  -e MCP_PORT=8000 \
  -e LOG_LEVEL=INFO \
  -e CHART_DEFAULT_WIDTH=1000 \
  -e CHART_DEFAULT_HEIGHT=700 \
  -e CHART_DEFAULT_DPI=150 \
  -e CHART_MAX_DATA_POINTS=5000 \
  mcp-plots
Cursor MCP Integration
Quick Setup for Cursor
The Plots MCP Server is designed to work seamlessly with Cursor's MCP support. Here's how to integrate it:
1. Add to Cursor's MCP Configuration
Add this to your Cursor MCP configuration file (~/.cursor/mcp.json or similar):
{
  "mcpServers": {
    "plots": {
      "command": "uvx",
      "args": [
        "--from", 
        "git+https://github.com/mr901/mcp-plots.git@main",
        "mcp-plots",
        "--transport", 
        "stdio"
      ],
      "env": {
        "LOG_LEVEL": "INFO",
        "CHART_DEFAULT_WIDTH": "800",
        "CHART_DEFAULT_HEIGHT": "600"
      }
    }
  }
}
2. Alternative: HTTP Transport
For HTTP-based integration:
{
  "mcpServers": {
    "plots-http": {
      "command": "uvx",
      "args": [
        "--from", 
        "git+https://github.com/mr901/mcp-plots.git@main", 
        "mcp-plots",
        "--transport", 
        "streamable-http",
        "--host", 
        "127.0.0.1",
        "--port", 
        "8000"
      ]
    }
  }
}
3. Local Development Setup
For local development (if you have the code cloned):
{
  "mcpServers": {
    "plots-dev": {
      "command": "python",
      "args": ["-m", "src", "--transport", "stdio"],
      "cwd": "/path/to/mcp-plots",
      "env": {
        "LOG_LEVEL": "DEBUG"
      }
    }
  }
}
4. Verify Integration
After adding the configuration:
- Restart Cursor
 - Check MCP connection in Cursor's MCP panel
 - Test with a simple chart:
Create a bar chart showing sales data: A=100, B=150, C=80 
MERMAID-First Approach
This server prioritizes MERMAID output by default because:
- ✅ Renders instantly in Cursor - No external viewers needed
 - ✅ Interactive - Cursor can analyze and discuss the diagrams
 - ✅ Lightweight - Fast generation and display
 - ✅ Scalable - Vector-based, works at any zoom level
 
Chart Types with Native MERMAID Support:
line,bar,pie,area→xychart-betaformathistogram→xychart-betawith automatic binningfunnel→ Styled flowchart with color gradientsgauge→ Flowchart with color-coded value indicatorssankey→ Flow diagrams with source/target styling
Available Tools
render_chart
Main chart generation tool with MERMAID-first approach.
Parameters:
chart_type- Chart type (line,bar,pie,scatter,heatmap, etc.)data- List of data objectsfield_map- Field mappings (x_field,y_field,category_field, etc.)config_overrides- Chart configuration overridesoutput_format- Output format (mermaid[default],mcp_image,mcp_text)
Special Modes:
chart_type="help"- Show available chart types and themeschart_type="suggest"- Analyze data and suggest field mappings
configure_preferences
Interactive configuration tool for setting user preferences.
Parameters:
output_format- Default output format (mermaid,mcp_image,mcp_text)theme- Default theme (default,dark,seaborn,minimal)chart_width- Default chart width in pixelschart_height- Default chart height in pixelsreset_to_defaults- Reset all preferences to system defaults
Features:
- Persistent Settings - Saved to 
~/.plots_mcp_config.json - Live Preview - Shows sample chart with current settings
 - Override Support - Use 
config_overridesfor one-off changes 
Documentation
Additional Resources
- Complete Documentation - Technical documentation hub
 - Quick Start - 5-minute setup guide
 - Integration Guide - MCP client setup and configuration
 - API Reference - Complete tool specifications and examples
 - Advanced Guide - Architecture, deployment, and development
 - Sample Prompts - Ready-to-use testing examples
 
Chart Examples
Basic Bar Chart:
{
  "chart_type": "bar",
  "data": [
    {"category": "Sales", "value": 120},
    {"category": "Marketing", "value": 80},
    {"category": "Support", "value": 60}
  ],
  "field_map": {
    "category_field": "category", 
    "value_field": "value"
  }
}
Time Series Line Chart:
{
  "chart_type": "line",
  "data": [
    {"date": "2024-01", "revenue": 1000},
    {"date": "2024-02", "revenue": 1200},
    {"date": "2024-03", "revenue": 1100}
  ],
  "field_map": {
    "x_field": "date",
    "y_field": "revenue"
  }
}
Funnel Chart:
{
  "chart_type": "funnel",
  "data": [
    {"stage": "Awareness", "value": 1000},
    {"stage": "Interest", "value": 500}, 
    {"stage": "Purchase", "value": 100}
  ],
  "field_map": {
    "category_field": "stage",
    "value_field": "value"
  }
}
🔧 Configuration
Environment Variables
MCP_TRANSPORT- Transport type (streamable-http|stdio)MCP_HOST- Host address (default:0.0.0.0)MCP_PORT- Port number (default:8000)LOG_LEVEL- Logging level (default:INFO)MCP_DEBUG- Enable debug mode (true|false)CHART_DEFAULT_WIDTH- Default chart width in pixels (default:800)CHART_DEFAULT_HEIGHT- Default chart height in pixels (default:600)CHART_DEFAULT_DPI- Default chart DPI (default:100)CHART_MAX_DATA_POINTS- Maximum data points per chart (default:10000)
User Preferences
Personal preferences are stored in ~/.plots_mcp_config.json:
{
  "defaults": {
    "output_format": "mermaid",
    "theme": "default",
    "chart_width": 800,
    "chart_height": 600
  },
  "user_preferences": {
    "output_format": "mcp_image",
    "theme": "dark"
  }
}
🚀 Advanced Usage
Custom Themes
Available themes: default, dark, seaborn, minimal, whitegrid, darkgrid, ticks
High-Resolution Charts
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots \
  --chart-width 1920 \
  --chart-height 1080 \
  --chart-dpi 300
Performance Optimization
- Use 
max_data_pointsto limit large datasets - MERMAID output is fastest for quick visualization
 - PNG output for high-quality static images
 - SVG output for scalable vector graphics
 
🐛 Troubleshooting
Common Issues
Issue: Charts not rendering in Cursor
- Solution: Ensure 
output_format="mermaid"(default) - Check: MCP server connection in Cursor
 
Issue: uvx command not found
- Solution: Install uv: 
curl -LsSf https://astral.sh/uv/install.sh | sh 
Issue: Port already in use
- Solution: Use different port: 
--port 8001 
Issue: Large datasets slow
- Solution: Sample data or increase 
--max-data-points 
Debug Mode
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots \
  --debug \
  --log-level DEBUG
📝 Notes
- Matplotlib runs headless (Agg backend) in the container
 - For large datasets, sample your data for responsiveness
 - Chart defaults can be overridden per-request via 
config_overrides - MERMAID charts render instantly in Cursor for the best user experience
 - User preferences persist across sessions and apply to all charts by default
 
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.