mcp-plots

mcp-plots

A MCP server for data visualization. It exposes tools to render charts (line, bar, pie, scatter, heatmap, etc.) from data and returns plots as either image/text/mermaid diagram.

Category
Visit Server

README

<div align="center">

<h1>Plots MCP Server</h1>

PyPI Smithery Glama Python Versions License

<a href="https://glama.ai/mcp/servers/@MR901/mcp-plots"> <img width="285" height="150" src="https://glama.ai/mcp/servers/@MR901/mcp-plots/badge" /> </a>

</div>

<br> A Model Context Protocol (MCP) server for data visualization. It exposes tools to render charts (line, bar, pie, scatter, heatmap, etc.) from data and returns the plot as image/base64 text/mermaid diagram.

<!-- mcp-name: io.github.MR901/mcp-plots -->

Why MCP Plots?

  • Instant, visual-first charts using Mermaid (renders directly in MCP clients like Cursor)
  • Simple prompts to generate charts from plain data
  • Zero-setup options via uvx, or install from PyPI/Docker
  • Flexible output formats: mermaid (default), PNG image, or text

Quick Usage

  • Ask your MCP client: "Create a bar chart showing sales: A=100, B=150, C=80"
  • Default output is Mermaid, so diagrams render instantly in Cursor

Quick Start

PyPI Installation (Recommended)

pip install mcp-plots
mcp-plots  # Start the server

For Cursor Users

  1. Install the package: pip install mcp-plots
  2. Add to your Cursor MCP config (~/.cursor/mcp.json):
    {
      "mcpServers": {
        "plots": {
          "command": "mcp-plots",
          "args": ["--transport", "stdio"]
        }
      }
    }
    
    Alternative (zero-install via uvx + PyPI):
    {
      "mcpServers": {
        "plots": {
          "command": "uvx",
          "args": ["mcp-plots", "--transport", "stdio"]
        }
      }
    }
    
  3. Restart Cursor
  4. Ask: "Create a bar chart showing sales: A=100, B=150, C=80"

Development Installation

uvx --from git+https://github.com/mr901/mcp-plots.git run-server.py

Documentation → | Quick Start → | API Reference →

MCP Registry

This server is published under the MCP registry identifier io.github.MR901/mcp-plots. You can discover/verify it via the official registry API:

curl "https://registry.modelcontextprotocol.io/v0/servers?search=io.github.MR901/mcp-plots"

Registry metadata for this project is tracked in server.json.

Install with Smithery

This repository includes a smithery.yaml for easy setup with Smithery.

  • File: smithery.yaml
  • Docs: https://smithery.ai/docs/config#smitheryyaml

Example install using the Smithery CLI (adjust --client as needed, e.g. cursor, claude):

npx -y @smithery/cli install \
  https://raw.githubusercontent.com/mr901/mcp-plots/main/smithery.yaml \
  --client cursor

After installation, your MCP client should be able to start the server over stdio using the command defined in smithery.yaml.

Project layout

src/
  app/                # Server construction and runtime
    server.py
  capabilities/       # MCP tools and prompts
    tools.py
    prompts.py
  visualization/      # Plotting engines and configurations
    chart_config.py
    generator.py

Requirements

  • Python 3.10+
  • See requirements.txt

Setup Routes

uvx (Recommended)

The easiest way to run the MCP server without managing Python environments:

# Run directly with uvx (no installation needed)
uvx --from git+https://github.com/mr901/mcp-plots.git run-server.py

# Or install and run the command
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots

# With custom options
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --port 8080 --log-level DEBUG

Why uvx?

  • No Environment Management: Automatically handles Python dependencies
  • Isolated Execution: Runs in its own virtual environment
  • Always Latest: Pulls fresh code from repository
  • Zero Setup: Works immediately without pip install
  • Cross-Platform: Same command works on Windows, macOS, Linux

PyPI (Traditional Installation)

  1. Install dependencies
pip install -r requirements.txt
  1. Run the server (HTTP transport, default port 8000)
python -m src --transport streamable-http --host 0.0.0.0 --port 8000 --log-level INFO
  1. Run with stdio (for MCP clients that spawn processes)
python -m src --transport stdio

Local Development (from source)

git clone https://github.com/mr901/mcp-plots.git
cd mcp-plots
pip install -e .
python -m src --transport stdio --log-level DEBUG

Docker

docker build -t mcp-plots .
docker run -p 8000:8000 mcp-plots

Environment variables (optional):

  • MCP_TRANSPORT (streamable-http|stdio)
  • MCP_HOST (default 0.0.0.0)
  • MCP_PORT (default 8000)
  • LOG_LEVEL (default INFO)

Tools

  • list_chart_types() → returns available chart types
  • list_themes() → returns available themes
  • suggest_fields(sample_rows) → suggests field roles based on data samples
  • render_chart(chart_type, data, field_map, config_overrides?, options?, output_format?) → returns MCP content
  • generate_test_image() → generates a test image (red circle) to verify MCP image support

Cursor Integration

This MCP server is fully compatible with Cursor's image support! When you use the render_chart tool:

  • Charts appear directly in chat - No need to save files or open separate windows
  • AI can analyze your charts - Vision-enabled models can discuss and interpret your visualizations
  • Perfect MCP format - Uses the exact base64 PNG format that Cursor expects

The server returns images in the MCP format Cursor requires:

{
  "content": [
    {
      "type": "image", 
      "data": "<base64-encoded-png>",
      "mimeType": "image/png"
    }
  ]
}

Example call (pseudo):

render_chart(
  chart_type="bar",
  data=[{"category":"A","value":10},{"category":"B","value":20}],
  field_map={"category_field":"category","value_field":"value"},
  config_overrides={"title":"Example Bar","width":800,"height":600,"output_format":"MCP_IMAGE"}
)

Return shape (PNG):

{
  "status": "success",
  "content": [{"type":"image","data":"<base64>","mimeType":"image/png"}]
}

Configuration

The server can be configured via environment variables or command line arguments:

Server Settings

  • MCP_TRANSPORT - Transport type: streamable-http or stdio (default: streamable-http)
  • MCP_HOST - Host address (default: 0.0.0.0)
  • MCP_PORT - Port number (default: 8000)
  • LOG_LEVEL - Logging level: DEBUG, INFO, WARNING, ERROR, CRITICAL (default: INFO)
  • MCP_DEBUG - Enable debug mode: true or false (default: false)

Chart Settings

  • CHART_DEFAULT_WIDTH - Default chart width in pixels (default: 800)
  • CHART_DEFAULT_HEIGHT - Default chart height in pixels (default: 600)
  • CHART_DEFAULT_DPI - Default chart DPI (default: 100)
  • CHART_MAX_DATA_POINTS - Maximum data points per chart (default: 10000)

Command Line Usage

With uvx (recommended):

uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --help

# Examples:
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --port 8080 --log-level DEBUG
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --chart-width 1200 --chart-height 800

Traditional Python:

python -m src --help

# Examples:
python -m src --transport streamable-http --host 0.0.0.0 --port 8000
python -m src --log-level DEBUG --chart-width 1200 --chart-height 800

Docker

Build image:

docker build -t mcp-plots .

Run container with custom configuration:

docker run --rm -p 8000:8000 \
  -e MCP_TRANSPORT=streamable-http \
  -e MCP_HOST=0.0.0.0 \
  -e MCP_PORT=8000 \
  -e LOG_LEVEL=INFO \
  -e CHART_DEFAULT_WIDTH=1000 \
  -e CHART_DEFAULT_HEIGHT=700 \
  -e CHART_DEFAULT_DPI=150 \
  -e CHART_MAX_DATA_POINTS=5000 \
  mcp-plots

Cursor MCP Integration

Quick Setup for Cursor

The Plots MCP Server is designed to work seamlessly with Cursor's MCP support. Here's how to integrate it:

1. Add to Cursor's MCP Configuration

Add this to your Cursor MCP configuration file (~/.cursor/mcp.json or similar):

{
  "mcpServers": {
    "plots": {
      "command": "uvx",
      "args": [
        "--from", 
        "git+https://github.com/mr901/mcp-plots.git@main",
        "mcp-plots",
        "--transport", 
        "stdio"
      ],
      "env": {
        "LOG_LEVEL": "INFO",
        "CHART_DEFAULT_WIDTH": "800",
        "CHART_DEFAULT_HEIGHT": "600"
      }
    }
  }
}

2. Alternative: HTTP Transport

For HTTP-based integration:

{
  "mcpServers": {
    "plots-http": {
      "command": "uvx",
      "args": [
        "--from", 
        "git+https://github.com/mr901/mcp-plots.git@main", 
        "mcp-plots",
        "--transport", 
        "streamable-http",
        "--host", 
        "127.0.0.1",
        "--port", 
        "8000"
      ]
    }
  }
}

3. Local Development Setup

For local development (if you have the code cloned):

{
  "mcpServers": {
    "plots-dev": {
      "command": "python",
      "args": ["-m", "src", "--transport", "stdio"],
      "cwd": "/path/to/mcp-plots",
      "env": {
        "LOG_LEVEL": "DEBUG"
      }
    }
  }
}

4. Verify Integration

After adding the configuration:

  1. Restart Cursor
  2. Check MCP connection in Cursor's MCP panel
  3. Test with a simple chart:
    Create a bar chart showing sales data: A=100, B=150, C=80
    

MERMAID-First Approach

This server prioritizes MERMAID output by default because:

  • Renders instantly in Cursor - No external viewers needed
  • Interactive - Cursor can analyze and discuss the diagrams
  • Lightweight - Fast generation and display
  • Scalable - Vector-based, works at any zoom level

Chart Types with Native MERMAID Support:

  • line, bar, pie, areaxychart-beta format
  • histogramxychart-beta with automatic binning
  • funnel → Styled flowchart with color gradients
  • gauge → Flowchart with color-coded value indicators
  • sankey → Flow diagrams with source/target styling

Available Tools

render_chart

Main chart generation tool with MERMAID-first approach.

Parameters:

  • chart_type - Chart type (line, bar, pie, scatter, heatmap, etc.)
  • data - List of data objects
  • field_map - Field mappings (x_field, y_field, category_field, etc.)
  • config_overrides - Chart configuration overrides
  • output_format - Output format (mermaid [default], mcp_image, mcp_text)

Special Modes:

  • chart_type="help" - Show available chart types and themes
  • chart_type="suggest" - Analyze data and suggest field mappings

configure_preferences

Interactive configuration tool for setting user preferences.

Parameters:

  • output_format - Default output format (mermaid, mcp_image, mcp_text)
  • theme - Default theme (default, dark, seaborn, minimal)
  • chart_width - Default chart width in pixels
  • chart_height - Default chart height in pixels
  • reset_to_defaults - Reset all preferences to system defaults

Features:

  • Persistent Settings - Saved to ~/.plots_mcp_config.json
  • Live Preview - Shows sample chart with current settings
  • Override Support - Use config_overrides for one-off changes

Documentation

Additional Resources

Chart Examples

Basic Bar Chart:

{
  "chart_type": "bar",
  "data": [
    {"category": "Sales", "value": 120},
    {"category": "Marketing", "value": 80},
    {"category": "Support", "value": 60}
  ],
  "field_map": {
    "category_field": "category", 
    "value_field": "value"
  }
}

Time Series Line Chart:

{
  "chart_type": "line",
  "data": [
    {"date": "2024-01", "revenue": 1000},
    {"date": "2024-02", "revenue": 1200},
    {"date": "2024-03", "revenue": 1100}
  ],
  "field_map": {
    "x_field": "date",
    "y_field": "revenue"
  }
}

Funnel Chart:

{
  "chart_type": "funnel",
  "data": [
    {"stage": "Awareness", "value": 1000},
    {"stage": "Interest", "value": 500}, 
    {"stage": "Purchase", "value": 100}
  ],
  "field_map": {
    "category_field": "stage",
    "value_field": "value"
  }
}

🔧 Configuration

Environment Variables

  • MCP_TRANSPORT - Transport type (streamable-http | stdio)
  • MCP_HOST - Host address (default: 0.0.0.0)
  • MCP_PORT - Port number (default: 8000)
  • LOG_LEVEL - Logging level (default: INFO)
  • MCP_DEBUG - Enable debug mode (true | false)
  • CHART_DEFAULT_WIDTH - Default chart width in pixels (default: 800)
  • CHART_DEFAULT_HEIGHT - Default chart height in pixels (default: 600)
  • CHART_DEFAULT_DPI - Default chart DPI (default: 100)
  • CHART_MAX_DATA_POINTS - Maximum data points per chart (default: 10000)

User Preferences

Personal preferences are stored in ~/.plots_mcp_config.json:

{
  "defaults": {
    "output_format": "mermaid",
    "theme": "default",
    "chart_width": 800,
    "chart_height": 600
  },
  "user_preferences": {
    "output_format": "mcp_image",
    "theme": "dark"
  }
}

🚀 Advanced Usage

Custom Themes

Available themes: default, dark, seaborn, minimal, whitegrid, darkgrid, ticks

High-Resolution Charts

uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots \
  --chart-width 1920 \
  --chart-height 1080 \
  --chart-dpi 300

Performance Optimization

  • Use max_data_points to limit large datasets
  • MERMAID output is fastest for quick visualization
  • PNG output for high-quality static images
  • SVG output for scalable vector graphics

🐛 Troubleshooting

Common Issues

Issue: Charts not rendering in Cursor

  • Solution: Ensure output_format="mermaid" (default)
  • Check: MCP server connection in Cursor

Issue: uvx command not found

  • Solution: Install uv: curl -LsSf https://astral.sh/uv/install.sh | sh

Issue: Port already in use

  • Solution: Use different port: --port 8001

Issue: Large datasets slow

  • Solution: Sample data or increase --max-data-points

Debug Mode

uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots \
  --debug \
  --log-level DEBUG

📝 Notes

  • Matplotlib runs headless (Agg backend) in the container
  • For large datasets, sample your data for responsiveness
  • Chart defaults can be overridden per-request via config_overrides
  • MERMAID charts render instantly in Cursor for the best user experience
  • User preferences persist across sessions and apply to all charts by default

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured