
MCP Perplexity Server
Provides AI-powered search, research, and reasoning capabilities through integration with Perplexity.ai, offering three specialized tools: general conversational AI, deep research with citations, and advanced reasoning.
README
MCP Perplexity Server
MCP server for Perplexity.ai that provides AI-powered search, research, and reasoning capabilities.
🚀 Features
- Perplexity AI Integration: Three specialized tools for different use cases
perplexity_ask
: General conversational AI using sonar-pro modelperplexity_research
: Deep research with citations using sonar-deep-research modelperplexity_reason
: Advanced reasoning using sonar-reasoning-pro model
- TypeScript: Full type safety with modern TypeScript patterns
- HTTP Transport: RESTful API with Express.js server
- Session Management: Stateful connections with proper session handling
- Configuration Management: Environment-based configuration with validation
- Error Handling: Comprehensive error handling and logging
- Health Checks: Built-in health monitoring endpoints
- Docker Support: Production-ready containerization
- Development Tools: ESLint, Prettier, and testing setup
- Production Ready: Optimized for scalability and security
📋 Prerequisites
- Node.js 20+
- npm or yarn
- Docker (optional, for containerization)
🛠️ Quick Start
Option 1: Use the Project Generator (Recommended)
# Clone the template
git clone <your-repo-url>
cd mcp-perplexity
# Create a new project using the generator
./create-mcp-project your-project-name --description "Your project description" --author "Your Name"
# Or use the Node.js script directly
node setup-new-project.js your-project-name --description "Your project description" --author "Your Name"
Generator Options:
--description <desc>
: Project description--author <name>
: Author name--target-dir <dir>
: Target directory (default: mcp-<project-name>)--install-deps
: Install npm dependencies automatically--no-git
: Skip git repository initialization
Option 2: Manual Setup
# Clone the template
git clone <your-repo-url>
cd mcp-template
# Install dependencies
npm install
# Copy environment configuration
cp .env.example .env # Create this file with your settings
2. Environment Configuration
Create a .env
file in the root directory:
# Server Configuration
PORT=3000
LOG_LEVEL=info
# Perplexity API Configuration
PERPLEXITY_API_KEY=your_perplexity_api_key_here
3. Development
# Start development server with hot reload
npm run dev
# Build for production
npm run build
# Start production server
npm start
# Run tests
npm test
# Lint and format code
npm run lint
npm run lint:fix
🏗️ Project Structure
mcp-perplexity/
├── src/
│ ├── config/ # Configuration management
│ │ └── index.ts # Main config file
│ ├── services/ # Service layer
│ │ └── perplexity.ts # Perplexity API service
│ ├── utils/ # Utility functions
│ └── index.ts # Main server application
├── create-mcp-project # Bash script for project generation
├── setup-new-project.js # Node.js project generator
├── Dockerfile # Docker configuration
├── package.json # Dependencies and scripts
├── tsconfig.json # TypeScript configuration
└── README.md # This file
🔧 Project Generator
This template includes powerful project generation tools to quickly create new MCP servers:
Features:
- Automatic Name Conversion: Converts kebab-case names to all required formats (camelCase, PascalCase, etc.)
- File Templating: Updates all files with the new project name and details
- Git Integration: Optionally initializes a new git repository
- Dependency Management: Can automatically install npm dependencies
- Smart Copy Logic: Excludes development files and prevents infinite recursion
Usage Examples:
# Basic usage
./create-mcp-project weather-service
# With full options
./create-mcp-project task-manager \
--description "AI-powered task management MCP server" \
--author "Your Name" \
--install-deps
# Custom target directory
./create-mcp-project file-processor --target-dir ./my-custom-server
# Skip git initialization
./create-mcp-project data-analyzer --no-git
🔧 Architecture
Core Components
- McpServerApp: Main application class that orchestrates the MCP server
- Configuration: Environment-based configuration with type safety
- Session Management: HTTP-based stateful sessions with cleanup
- Transport Layer: StreamableHTTPServerTransport for MCP communication
- Error Handling: Comprehensive error handling with proper HTTP responses
HTTP Endpoints
GET /health
- Health check endpointPOST /mcp
- Main MCP communication endpointGET /mcp
- Server-to-client notifications via SSEDELETE /mcp
- Session termination
🛠️ Customization Guide
Using Perplexity Tools
The server provides three Perplexity AI tools:
1. perplexity_ask
General conversational AI using the sonar-pro model.
{
"name": "perplexity_ask",
"arguments": {
"messages": [
{
"role": "user",
"content": "What are the latest developments in AI?"
}
]
}
}
2. perplexity_research
Deep research with citations using the sonar-deep-research model.
{
"name": "perplexity_research",
"arguments": {
"messages": [
{
"role": "user",
"content": "Research the current state of quantum computing and its applications"
}
]
}
}
3. perplexity_reason
Advanced reasoning using the sonar-reasoning-pro model.
{
"name": "perplexity_reason",
"arguments": {
"messages": [
{
"role": "user",
"content": "Analyze the pros and cons of different renewable energy sources"
}
]
}
}
Adding New Tools
To add a new MCP tool, modify the createServer()
method in src/index.ts
:
// Register your custom tool
server.tool(
'your-tool-name',
'Description of your tool',
{
// Define input schema using Zod
parameter1: z.string().describe('Parameter description'),
parameter2: z.number().optional().describe('Optional parameter'),
},
async ({ parameter1, parameter2 }) => {
try {
// Your tool implementation here
const result = await yourCustomLogic(parameter1, parameter2);
return {
content: [
{
type: 'text',
text: JSON.stringify(result, null, 2),
} as TextContent,
],
};
} catch (error) {
const errorMessage =
error instanceof Error ? error.message : String(error);
throw new Error(`Error in your-tool-name: ${errorMessage}`);
}
}
);
Configuration Management
Add new configuration options in src/config/index.ts
:
interface Config {
logging: LoggingConfig;
server: ServerConfig;
// Add your custom config sections
database: {
url: string;
timeout: number;
};
external: {
apiKey: string;
baseUrl: string;
};
}
const config: Config = {
// ... existing config
database: {
url: process.env.DATABASE_URL || 'sqlite://memory',
timeout: parseInt(process.env.DB_TIMEOUT || '5000', 10),
},
external: {
apiKey: process.env.EXTERNAL_API_KEY || '',
baseUrl: process.env.EXTERNAL_BASE_URL || 'https://api.example.com',
},
};
Adding Middleware
Add Express middleware in the run()
method:
async run() {
const app = express();
app.use(express.json());
// Add your custom middleware
app.use(cors()); // CORS support
app.use(helmet()); // Security headers
app.use(morgan('combined')); // Request logging
// ... rest of the setup
}
🐳 Docker Deployment
Build and Run
# Build Docker image
docker build -t mcp-perplexity-server .
# Run container
docker run -p 3000:3000 --env-file .env mcp-perplexity-server
Docker Compose (Recommended)
Create a docker-compose.yml
:
version: '3.8'
services:
mcp-server:
build: .
ports:
- '3000:3000'
environment:
- NODE_ENV=production
- PORT=3000
- LOG_LEVEL=info
restart: unless-stopped
healthcheck:
test: ['CMD', 'curl', '-f', 'http://localhost:3000/health']
interval: 30s
timeout: 10s
retries: 3
Run with:
docker-compose up -d
🔒 Security Best Practices
This template implements several security measures:
- Input Validation: Zod schema validation for all tool parameters
- Error Handling: Safe error responses without information leakage
- Session Management: Proper session cleanup and validation
- HTTP Security: Ready for security headers and CORS configuration
- Environment Variables: Secure configuration management
Recommended Additional Security
// Add security middleware
import helmet from 'helmet';
import cors from 'cors';
import rateLimit from 'express-rate-limit';
app.use(helmet());
app.use(
cors({
origin: process.env.ALLOWED_ORIGINS?.split(',') || false,
})
);
const limiter = rateLimit({
windowMs: 15 * 60 * 1000, // 15 minutes
max: 100, // Limit each IP to 100 requests per windowMs
});
app.use('/mcp', limiter);
📊 Monitoring and Logging
The template includes basic logging setup. For production, consider adding:
- Structured Logging: Winston with JSON format
- Metrics Collection: Prometheus metrics
- Health Checks: Comprehensive health endpoints
- APM Integration: Application Performance Monitoring
🧪 Testing
# Run all tests
npm test
# Run tests in watch mode
npm run test:watch
# Run tests with coverage
npm run test:coverage
Writing Tests
Create test files in src/**/*.test.ts
:
import { describe, test, expect } from '@jest/globals';
// Your test imports
describe('YourComponent', () => {
test('should handle valid input', async () => {
// Test implementation
});
});
🚀 Production Deployment
Environment Variables
NODE_ENV=production
PORT=3000
LOG_LEVEL=warn
# Add your production-specific variables
DATABASE_URL=postgresql://...
REDIS_URL=redis://...
API_KEYS=...
Performance Optimization
- Enable gzip compression
- Implement proper caching headers
- Use connection pooling for databases
- Monitor memory usage and implement limits
- Set up log rotation
Scaling Considerations
- Load balancing across multiple instances
- Database connection pooling
- Session store externalization (Redis)
- Horizontal pod autoscaling in Kubernetes
📚 References
- Model Context Protocol Documentation
- MCP SDK Documentation
- Express.js Documentation
- TypeScript Documentation
🤝 Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Run the test suite
- Submit a pull request
📝 License
This project is licensed under the MIT License - see the LICENSE file for details.
🆘 Support
For questions and support:
- Check the MCP Documentation
- Review existing issues
- Create a new issue with detailed information
Happy coding! 🎉
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.