MCP Perplexity Server

MCP Perplexity Server

Provides AI-powered search, research, and reasoning capabilities through integration with Perplexity.ai, offering three specialized tools: general conversational AI, deep research with citations, and advanced reasoning.

Category
Visit Server

README

MCP Perplexity Server

MCP server for Perplexity.ai that provides AI-powered search, research, and reasoning capabilities.

🚀 Features

  • Perplexity AI Integration: Three specialized tools for different use cases
    • perplexity_ask: General conversational AI using sonar-pro model
    • perplexity_research: Deep research with citations using sonar-deep-research model
    • perplexity_reason: Advanced reasoning using sonar-reasoning-pro model
  • TypeScript: Full type safety with modern TypeScript patterns
  • HTTP Transport: RESTful API with Express.js server
  • Session Management: Stateful connections with proper session handling
  • Configuration Management: Environment-based configuration with validation
  • Error Handling: Comprehensive error handling and logging
  • Health Checks: Built-in health monitoring endpoints
  • Docker Support: Production-ready containerization
  • Development Tools: ESLint, Prettier, and testing setup
  • Production Ready: Optimized for scalability and security

📋 Prerequisites

  • Node.js 20+
  • npm or yarn
  • Docker (optional, for containerization)

🛠️ Quick Start

Option 1: Use the Project Generator (Recommended)

# Clone the template
git clone <your-repo-url>
cd mcp-perplexity


# Create a new project using the generator
./create-mcp-project your-project-name --description "Your project description" --author "Your Name"

# Or use the Node.js script directly
node setup-new-project.js your-project-name --description "Your project description" --author "Your Name"

Generator Options:

  • --description <desc>: Project description
  • --author <name>: Author name
  • --target-dir <dir>: Target directory (default: mcp-<project-name>)
  • --install-deps: Install npm dependencies automatically
  • --no-git: Skip git repository initialization

Option 2: Manual Setup

# Clone the template
git clone <your-repo-url>
cd mcp-template

# Install dependencies
npm install

# Copy environment configuration
cp .env.example .env  # Create this file with your settings

2. Environment Configuration

Create a .env file in the root directory:

# Server Configuration
PORT=3000
LOG_LEVEL=info

# Perplexity API Configuration
PERPLEXITY_API_KEY=your_perplexity_api_key_here

3. Development

# Start development server with hot reload
npm run dev

# Build for production
npm run build

# Start production server
npm start

# Run tests
npm test

# Lint and format code
npm run lint
npm run lint:fix

🏗️ Project Structure

mcp-perplexity/
├── src/
│   ├── config/           # Configuration management
│   │   └── index.ts      # Main config file
│   ├── services/         # Service layer
│   │   └── perplexity.ts # Perplexity API service
│   ├── utils/            # Utility functions
│   └── index.ts          # Main server application
├── create-mcp-project    # Bash script for project generation
├── setup-new-project.js  # Node.js project generator
├── Dockerfile            # Docker configuration
├── package.json          # Dependencies and scripts
├── tsconfig.json         # TypeScript configuration
└── README.md            # This file

🔧 Project Generator

This template includes powerful project generation tools to quickly create new MCP servers:

Features:

  • Automatic Name Conversion: Converts kebab-case names to all required formats (camelCase, PascalCase, etc.)
  • File Templating: Updates all files with the new project name and details
  • Git Integration: Optionally initializes a new git repository
  • Dependency Management: Can automatically install npm dependencies
  • Smart Copy Logic: Excludes development files and prevents infinite recursion

Usage Examples:

# Basic usage
./create-mcp-project weather-service

# With full options
./create-mcp-project task-manager \
  --description "AI-powered task management MCP server" \
  --author "Your Name" \
  --install-deps

# Custom target directory
./create-mcp-project file-processor --target-dir ./my-custom-server

# Skip git initialization
./create-mcp-project data-analyzer --no-git

🔧 Architecture

Core Components

  1. McpServerApp: Main application class that orchestrates the MCP server
  2. Configuration: Environment-based configuration with type safety
  3. Session Management: HTTP-based stateful sessions with cleanup
  4. Transport Layer: StreamableHTTPServerTransport for MCP communication
  5. Error Handling: Comprehensive error handling with proper HTTP responses

HTTP Endpoints

  • GET /health - Health check endpoint
  • POST /mcp - Main MCP communication endpoint
  • GET /mcp - Server-to-client notifications via SSE
  • DELETE /mcp - Session termination

🛠️ Customization Guide

Using Perplexity Tools

The server provides three Perplexity AI tools:

1. perplexity_ask

General conversational AI using the sonar-pro model.

{
  "name": "perplexity_ask",
  "arguments": {
    "messages": [
      {
        "role": "user",
        "content": "What are the latest developments in AI?"
      }
    ]
  }
}

2. perplexity_research

Deep research with citations using the sonar-deep-research model.

{
  "name": "perplexity_research",
  "arguments": {
    "messages": [
      {
        "role": "user",
        "content": "Research the current state of quantum computing and its applications"
      }
    ]
  }
}

3. perplexity_reason

Advanced reasoning using the sonar-reasoning-pro model.

{
  "name": "perplexity_reason",
  "arguments": {
    "messages": [
      {
        "role": "user",
        "content": "Analyze the pros and cons of different renewable energy sources"
      }
    ]
  }
}

Adding New Tools

To add a new MCP tool, modify the createServer() method in src/index.ts:

// Register your custom tool
server.tool(
  'your-tool-name',
  'Description of your tool',
  {
    // Define input schema using Zod
    parameter1: z.string().describe('Parameter description'),
    parameter2: z.number().optional().describe('Optional parameter'),
  },
  async ({ parameter1, parameter2 }) => {
    try {
      // Your tool implementation here
      const result = await yourCustomLogic(parameter1, parameter2);

      return {
        content: [
          {
            type: 'text',
            text: JSON.stringify(result, null, 2),
          } as TextContent,
        ],
      };
    } catch (error) {
      const errorMessage =
        error instanceof Error ? error.message : String(error);
      throw new Error(`Error in your-tool-name: ${errorMessage}`);
    }
  }
);

Configuration Management

Add new configuration options in src/config/index.ts:

interface Config {
  logging: LoggingConfig;
  server: ServerConfig;
  // Add your custom config sections
  database: {
    url: string;
    timeout: number;
  };
  external: {
    apiKey: string;
    baseUrl: string;
  };
}

const config: Config = {
  // ... existing config
  database: {
    url: process.env.DATABASE_URL || 'sqlite://memory',
    timeout: parseInt(process.env.DB_TIMEOUT || '5000', 10),
  },
  external: {
    apiKey: process.env.EXTERNAL_API_KEY || '',
    baseUrl: process.env.EXTERNAL_BASE_URL || 'https://api.example.com',
  },
};

Adding Middleware

Add Express middleware in the run() method:

async run() {
  const app = express();
  app.use(express.json());

  // Add your custom middleware
  app.use(cors()); // CORS support
  app.use(helmet()); // Security headers
  app.use(morgan('combined')); // Request logging

  // ... rest of the setup
}

🐳 Docker Deployment

Build and Run

# Build Docker image
docker build -t mcp-perplexity-server .

# Run container
docker run -p 3000:3000 --env-file .env mcp-perplexity-server

Docker Compose (Recommended)

Create a docker-compose.yml:

version: '3.8'
services:
  mcp-server:
    build: .
    ports:
      - '3000:3000'
    environment:
      - NODE_ENV=production
      - PORT=3000
      - LOG_LEVEL=info
    restart: unless-stopped
    healthcheck:
      test: ['CMD', 'curl', '-f', 'http://localhost:3000/health']
      interval: 30s
      timeout: 10s
      retries: 3

Run with:

docker-compose up -d

🔒 Security Best Practices

This template implements several security measures:

  • Input Validation: Zod schema validation for all tool parameters
  • Error Handling: Safe error responses without information leakage
  • Session Management: Proper session cleanup and validation
  • HTTP Security: Ready for security headers and CORS configuration
  • Environment Variables: Secure configuration management

Recommended Additional Security

// Add security middleware
import helmet from 'helmet';
import cors from 'cors';
import rateLimit from 'express-rate-limit';

app.use(helmet());
app.use(
  cors({
    origin: process.env.ALLOWED_ORIGINS?.split(',') || false,
  })
);

const limiter = rateLimit({
  windowMs: 15 * 60 * 1000, // 15 minutes
  max: 100, // Limit each IP to 100 requests per windowMs
});
app.use('/mcp', limiter);

📊 Monitoring and Logging

The template includes basic logging setup. For production, consider adding:

  • Structured Logging: Winston with JSON format
  • Metrics Collection: Prometheus metrics
  • Health Checks: Comprehensive health endpoints
  • APM Integration: Application Performance Monitoring

🧪 Testing

# Run all tests
npm test

# Run tests in watch mode
npm run test:watch

# Run tests with coverage
npm run test:coverage

Writing Tests

Create test files in src/**/*.test.ts:

import { describe, test, expect } from '@jest/globals';
// Your test imports

describe('YourComponent', () => {
  test('should handle valid input', async () => {
    // Test implementation
  });
});

🚀 Production Deployment

Environment Variables

NODE_ENV=production
PORT=3000
LOG_LEVEL=warn

# Add your production-specific variables
DATABASE_URL=postgresql://...
REDIS_URL=redis://...
API_KEYS=...

Performance Optimization

  • Enable gzip compression
  • Implement proper caching headers
  • Use connection pooling for databases
  • Monitor memory usage and implement limits
  • Set up log rotation

Scaling Considerations

  • Load balancing across multiple instances
  • Database connection pooling
  • Session store externalization (Redis)
  • Horizontal pod autoscaling in Kubernetes

📚 References

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Run the test suite
  6. Submit a pull request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

For questions and support:

  • Check the MCP Documentation
  • Review existing issues
  • Create a new issue with detailed information

Happy coding! 🎉

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured