MCP Performance Analyzer
Monitors and analyzes mobile application performance data to detect severe issues such as excessive memory usage and view count growth. Provides intelligent analysis with customizable rules and integrates seamlessly with development workflows.
README
🚀 MCP性能分析服务器
移动应用性能监控数据智能分析工具,专注于严重问题检测
📋 快速开始
1. 获取项目
git clone git@github.com:DaSheng1994/mcp_analyze_quality.git
cd mcp_analyze_quality
2. 安装依赖
# 创建虚拟环境
python3 -m venv .venv
source .venv/bin/activate # Linux/macOS
# 安装依赖
pip install -r requirements.txt
3. 配置Cursor MCP
编辑 ~/.cursor/mcp.json:
{
"mcpServers": {
"performance-analyzer": {
"command": "/path/to/your/project/.venv/bin/python",
"args": ["/path/to/your/project/main.py"],
"cwd": "/path/to/your/project"
}
}
}
4. 重启Cursor并使用
完全退出并重新启动Cursor,然后在对话中输入:
分析这个性能数据:http://localhost:8000/meminfo.csv
🌐 远程部署
服务器端部署
# 在服务器上部署
git clone git@github.com:DaSheng1994/mcp_analyze_quality.git
cd mcp_analyze_quality
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
# 启动服务(后台运行)
nohup python main.py > mcp.log 2>&1 &
nohup python3 -m http.server 8000 > http.log 2>&1 &
客户端配置
团队成员在各自的Cursor中配置:
{
"mcpServers": {
"performance-analyzer": {
"command": "ssh",
"args": ["your-server", "cd /path/to/mcp_analyze_quality && .venv/bin/python main.py"],
"env": {}
}
}
}
使用远程服务
分析这个性能数据:http://your-server-ip:8000/meminfo.csv
📊 功能特性
- 严重问题检测: 专注于识别需要立即处理的严重性能问题
- 简洁输出: 只返回严重警告信息,避免信息过载
- 智能分析: 基于预定义规则进行精准判断
- 易于集成: 轻量级MCP服务器,快速部署
🚨 严重警告规则
当前支持的严重警告检测:
- 物理内存警告: VmRSS超过1.3GB时触发
- Views数量警告: Views增长超过700个时触发
📝 自定义规则
可以通过修改 .cursor/rules/quality-rules.mdc 文件来自定义分析规则。
🚀 现在就开始使用MCP性能分析工具吧!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.