MCP PDF Reader Server
Enables comprehensive PDF processing including text extraction, image extraction, and OCR capabilities for reading text within images across multiple languages.
README
MCP PDF Reader Server (Python + FastMCP)
A powerful Model Context Protocol (MCP) server built with FastMCP that provides comprehensive PDF processing capabilities including text extraction, image extraction, and OCR for reading text within images.
Features
- Text Extraction: Extract text content from PDF pages
- Image Extraction: Extract all images from PDF files
- OCR Capabilities: Read text from images using Tesseract OCR
- Comprehensive Analysis: Get detailed PDF structure and metadata
- Page Range Support: Process specific page ranges
- Multiple Languages: OCR support for multiple languages
Prerequisites
System Dependencies
Tesseract OCR
You need to install Tesseract OCR on your system:
Ubuntu/Debian:
sudo apt update
sudo apt install tesseract-ocr tesseract-ocr-eng
macOS:
brew install tesseract
Windows:
- Download from: https://github.com/UB-Mannheim/tesseract/wiki
- Install and add to PATH
- Or use:
conda install -c conda-forge tesseract
Additional Language Packs (Optional)
# For multiple languages
sudo apt install tesseract-ocr-fra tesseract-ocr-deu tesseract-ocr-spa
Installation
Quick Start with UV
- Install UV (if not already installed):
# macOS/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# Windows
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
- Clone/Create the project:
mkdir mcp-pdf-reader-server
cd mcp-pdf-reader-server
- Initialize and install with UV:
# Copy the files (pdf_reader_server.py and pyproject.toml)
# Then install dependencies
uv sync
- Verify installation:
uv run python -c "import pytesseract; print(pytesseract.get_tesseract_version())"
Alternative: Manual Setup
If you prefer traditional setup:
- Create virtual environment:
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install dependencies:
pip install fastmcp PyMuPDF pytesseract Pillow
Usage
Running the Server
With UV:
uv run python pdf_reader_server.py
Or if you have the environment activated:
python pdf_reader_server.py
The server will start and listen for MCP requests on stdin/stdout.
Available Tools
1. read_pdf_text
Extract text content from PDF pages.
Parameters:
file_path(string, required): Path to the PDF filepage_range(object, optional): Dict withstartandendpage numbers
Example:
{
"file_path": "/path/to/document.pdf",
"page_range": {"start": 1, "end": 5}
}
2. extract_pdf_images
Extract all images from a PDF file.
Parameters:
file_path(string, required): Path to the PDF fileoutput_dir(string, optional): Directory to save imagespage_range(object, optional): Page range to process
Example:
{
"file_path": "/path/to/document.pdf",
"output_dir": "/path/to/images/",
"page_range": {"start": 1, "end": 3}
}
3. read_pdf_with_ocr
Extract text from both regular text and images using OCR.
Parameters:
file_path(string, required): Path to the PDF filepage_range(object, optional): Page range to processocr_language(string, optional): OCR language code (default: "eng")
Example:
{
"file_path": "/path/to/document.pdf",
"ocr_language": "eng+fra",
"page_range": {"start": 1, "end": 10}
}
Supported OCR Languages:
eng- Englishfra- Frenchdeu- Germanspa- Spanisheng+fra- Multiple languages
4. get_pdf_info
Get comprehensive metadata and statistics about a PDF.
Parameters:
file_path(string, required): Path to the PDF file
5. analyze_pdf_structure
Analyze the structure and content distribution of a PDF.
Parameters:
file_path(string, required): Path to the PDF file
Configuration with Claude Desktop
With UV
Add this to your claude_desktop_config.json:
{
"mcpServers": {
"pdf-reader": {
"command": "uv",
"args": ["run", "python", "/path/to/your/pdf_reader_server.py"],
"cwd": "/path/to/your/mcp-pdf-reader-server"
}
}
}
With Virtual Environment
{
"mcpServers": {
"pdf-reader": {
"command": "/path/to/your/.venv/bin/python",
"args": ["/path/to/your/pdf_reader_server.py"]
}
}
}
System Python
{
"mcpServers": {
"pdf-reader": {
"command": "python",
"args": ["/path/to/your/pdf_reader_server.py"],
"env": {
"PYTHONPATH": "/path/to/your/.venv/lib/python3.x/site-packages"
}
}
}
}
Example Responses
Text Extraction Response
{
"success": true,
"file_path": "/path/to/document.pdf",
"pages_processed": "1-3",
"total_pages": 10,
"pages_text": [
{
"page_number": 1,
"text": "Page 1 content...",
"word_count": 125
}
],
"combined_text": "All text combined...",
"total_word_count": 1250,
"total_character_count": 8750
}
OCR Response
{
"success": true,
"file_path": "/path/to/document.pdf",
"pages_processed": "1-2",
"ocr_language": "eng",
"pages_data": [
{
"page_number": 1,
"text": "Regular text from PDF...",
"ocr_text": "Text extracted from images...",
"images_with_text": [
{
"image_index": 1,
"ocr_text": "Text from image 1",
"confidence": "high"
}
],
"combined_text": "Combined text and OCR...",
"text_word_count": 100,
"ocr_word_count": 25
}
],
"summary": {
"total_text_word_count": 200,
"total_ocr_word_count": 50,
"combined_word_count": 250,
"images_processed": 3
},
"all_text_combined": "All extracted text..."
}
Performance Considerations
OCR Performance
- OCR processing can be slow for large images
- Consider processing smaller page ranges for faster results
- Images smaller than 50x50 pixels are automatically skipped
Memory Usage
- Large PDFs with many images may consume significant memory
- The server processes pages sequentially to manage memory usage
- Extracted images are saved to disk to reduce memory pressure
Optimization Tips
- Use page ranges for large documents
- Specify output directories for image extraction to avoid temp file buildup
- Choose appropriate OCR languages to improve accuracy and speed
- Preprocess images if OCR quality is poor (consider adding OpenCV)
Troubleshooting
Common Issues
-
Tesseract not found:
TesseractNotFoundError: tesseract is not installed- Install Tesseract OCR system package
- Ensure it's in your PATH
-
Permission errors:
- Ensure the Python process has read access to PDF files
- Ensure write access to output directories
-
Poor OCR results:
- Try different OCR language codes
- Consider image preprocessing
- Check if images are high enough resolution
-
Memory errors:
- Process smaller page ranges
- Close other applications
- Consider increasing available RAM
Debug Mode
Run with debug logging using UV:
PYTHONUNBUFFERED=1 uv run python pdf_reader_server.py
Or with regular Python:
PYTHONUNBUFFERED=1 python pdf_reader_server.py
Testing OCR
Test Tesseract directly:
tesseract --list-langs
tesseract image.png output.txt
Dependencies
- fastmcp: Modern MCP server framework
- PyMuPDF: Fast PDF processing and rendering
- pytesseract: Python wrapper for Tesseract OCR
- Pillow: Image processing library
- tesseract-ocr: System OCR engine
Advanced Features
Custom OCR Configuration
You can modify the OCR configuration in the code:
ocr_text = pytesseract.image_to_string(
pil_image,
lang=ocr_language,
config='--psm 6 -c tessedit_char_whitelist=0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz '
)
Image Preprocessing
For better OCR results, consider adding image preprocessing:
# Add to requirements: opencv-python, numpy
import cv2
import numpy as np
# Preprocessing example
def preprocess_image(image):
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
return Image.fromarray(thresh)
Contributing
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Submit a pull request
License
MIT License - see LICENSE file for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.