MCP PDF Reader Server

MCP PDF Reader Server

Enables comprehensive PDF processing including text extraction, image extraction, and OCR capabilities for reading text within images across multiple languages.

Category
Visit Server

README

MCP PDF Reader Server (Python + FastMCP)

A powerful Model Context Protocol (MCP) server built with FastMCP that provides comprehensive PDF processing capabilities including text extraction, image extraction, and OCR for reading text within images.

Features

  • Text Extraction: Extract text content from PDF pages
  • Image Extraction: Extract all images from PDF files
  • OCR Capabilities: Read text from images using Tesseract OCR
  • Comprehensive Analysis: Get detailed PDF structure and metadata
  • Page Range Support: Process specific page ranges
  • Multiple Languages: OCR support for multiple languages

Prerequisites

System Dependencies

Tesseract OCR

You need to install Tesseract OCR on your system:

Ubuntu/Debian:

sudo apt update
sudo apt install tesseract-ocr tesseract-ocr-eng

macOS:

brew install tesseract

Windows:

  1. Download from: https://github.com/UB-Mannheim/tesseract/wiki
  2. Install and add to PATH
  3. Or use: conda install -c conda-forge tesseract

Additional Language Packs (Optional)

# For multiple languages
sudo apt install tesseract-ocr-fra tesseract-ocr-deu tesseract-ocr-spa

Installation

Quick Start with UV

  1. Install UV (if not already installed):
# macOS/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh

# Windows
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
  1. Clone/Create the project:
mkdir mcp-pdf-reader-server
cd mcp-pdf-reader-server
  1. Initialize and install with UV:
# Copy the files (pdf_reader_server.py and pyproject.toml)
# Then install dependencies
uv sync
  1. Verify installation:
uv run python -c "import pytesseract; print(pytesseract.get_tesseract_version())"

Alternative: Manual Setup

If you prefer traditional setup:

  1. Create virtual environment:
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
  1. Install dependencies:
pip install fastmcp PyMuPDF pytesseract Pillow

Usage

Running the Server

With UV:

uv run python pdf_reader_server.py

Or if you have the environment activated:

python pdf_reader_server.py

The server will start and listen for MCP requests on stdin/stdout.

Available Tools

1. read_pdf_text

Extract text content from PDF pages.

Parameters:

  • file_path (string, required): Path to the PDF file
  • page_range (object, optional): Dict with start and end page numbers

Example:

{
  "file_path": "/path/to/document.pdf",
  "page_range": {"start": 1, "end": 5}
}

2. extract_pdf_images

Extract all images from a PDF file.

Parameters:

  • file_path (string, required): Path to the PDF file
  • output_dir (string, optional): Directory to save images
  • page_range (object, optional): Page range to process

Example:

{
  "file_path": "/path/to/document.pdf",
  "output_dir": "/path/to/images/",
  "page_range": {"start": 1, "end": 3}
}

3. read_pdf_with_ocr

Extract text from both regular text and images using OCR.

Parameters:

  • file_path (string, required): Path to the PDF file
  • page_range (object, optional): Page range to process
  • ocr_language (string, optional): OCR language code (default: "eng")

Example:

{
  "file_path": "/path/to/document.pdf",
  "ocr_language": "eng+fra",
  "page_range": {"start": 1, "end": 10}
}

Supported OCR Languages:

  • eng - English
  • fra - French
  • deu - German
  • spa - Spanish
  • eng+fra - Multiple languages

4. get_pdf_info

Get comprehensive metadata and statistics about a PDF.

Parameters:

  • file_path (string, required): Path to the PDF file

5. analyze_pdf_structure

Analyze the structure and content distribution of a PDF.

Parameters:

  • file_path (string, required): Path to the PDF file

Configuration with Claude Desktop

With UV

Add this to your claude_desktop_config.json:

{
  "mcpServers": {
    "pdf-reader": {
      "command": "uv",
      "args": ["run", "python", "/path/to/your/pdf_reader_server.py"],
      "cwd": "/path/to/your/mcp-pdf-reader-server"
    }
  }
}

With Virtual Environment

{
  "mcpServers": {
    "pdf-reader": {
      "command": "/path/to/your/.venv/bin/python",
      "args": ["/path/to/your/pdf_reader_server.py"]
    }
  }
}

System Python

{
  "mcpServers": {
    "pdf-reader": {
      "command": "python",
      "args": ["/path/to/your/pdf_reader_server.py"],
      "env": {
        "PYTHONPATH": "/path/to/your/.venv/lib/python3.x/site-packages"
      }
    }
  }
}

Example Responses

Text Extraction Response

{
  "success": true,
  "file_path": "/path/to/document.pdf",
  "pages_processed": "1-3",
  "total_pages": 10,
  "pages_text": [
    {
      "page_number": 1,
      "text": "Page 1 content...",
      "word_count": 125
    }
  ],
  "combined_text": "All text combined...",
  "total_word_count": 1250,
  "total_character_count": 8750
}

OCR Response

{
  "success": true,
  "file_path": "/path/to/document.pdf",
  "pages_processed": "1-2",
  "ocr_language": "eng",
  "pages_data": [
    {
      "page_number": 1,
      "text": "Regular text from PDF...",
      "ocr_text": "Text extracted from images...",
      "images_with_text": [
        {
          "image_index": 1,
          "ocr_text": "Text from image 1",
          "confidence": "high"
        }
      ],
      "combined_text": "Combined text and OCR...",
      "text_word_count": 100,
      "ocr_word_count": 25
    }
  ],
  "summary": {
    "total_text_word_count": 200,
    "total_ocr_word_count": 50,
    "combined_word_count": 250,
    "images_processed": 3
  },
  "all_text_combined": "All extracted text..."
}

Performance Considerations

OCR Performance

  • OCR processing can be slow for large images
  • Consider processing smaller page ranges for faster results
  • Images smaller than 50x50 pixels are automatically skipped

Memory Usage

  • Large PDFs with many images may consume significant memory
  • The server processes pages sequentially to manage memory usage
  • Extracted images are saved to disk to reduce memory pressure

Optimization Tips

  1. Use page ranges for large documents
  2. Specify output directories for image extraction to avoid temp file buildup
  3. Choose appropriate OCR languages to improve accuracy and speed
  4. Preprocess images if OCR quality is poor (consider adding OpenCV)

Troubleshooting

Common Issues

  1. Tesseract not found:

    TesseractNotFoundError: tesseract is not installed
    
    • Install Tesseract OCR system package
    • Ensure it's in your PATH
  2. Permission errors:

    • Ensure the Python process has read access to PDF files
    • Ensure write access to output directories
  3. Poor OCR results:

    • Try different OCR language codes
    • Consider image preprocessing
    • Check if images are high enough resolution
  4. Memory errors:

    • Process smaller page ranges
    • Close other applications
    • Consider increasing available RAM

Debug Mode

Run with debug logging using UV:

PYTHONUNBUFFERED=1 uv run python pdf_reader_server.py

Or with regular Python:

PYTHONUNBUFFERED=1 python pdf_reader_server.py

Testing OCR

Test Tesseract directly:

tesseract --list-langs
tesseract image.png output.txt

Dependencies

  • fastmcp: Modern MCP server framework
  • PyMuPDF: Fast PDF processing and rendering
  • pytesseract: Python wrapper for Tesseract OCR
  • Pillow: Image processing library
  • tesseract-ocr: System OCR engine

Advanced Features

Custom OCR Configuration

You can modify the OCR configuration in the code:

ocr_text = pytesseract.image_to_string(
    pil_image, 
    lang=ocr_language,
    config='--psm 6 -c tessedit_char_whitelist=0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz '
)

Image Preprocessing

For better OCR results, consider adding image preprocessing:

# Add to requirements: opencv-python, numpy
import cv2
import numpy as np

# Preprocessing example
def preprocess_image(image):
    gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
    thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
    return Image.fromarray(thresh)

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Submit a pull request

License

MIT License - see LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured