MCP-OPENAPI-DOCX

MCP-OPENAPI-DOCX

Enterprise-grade document editing and management server that enables AI-powered operations on Microsoft Word DOCX files, including creating, editing, formatting, and exporting documents through both MCP protocol and RESTful API.

Category
Visit Server

README

MCP-OPENAPI-DOCX

Enterprise-grade document editing and management server supporting MCP (Model Context Protocol) and OpenAPI protocols for DOCX documents.

CI/CD Pipeline Deploy Python Version License

๐ŸŒŸ Features

  • Complete DOCX Support: Full support for reading, writing, and editing Microsoft Word documents
  • MCP Protocol: Implements the Model Context Protocol for AI-powered document operations
  • RESTful API: Comprehensive OpenAPI-compliant REST API with Swagger documentation
  • Async Architecture: Built with FastAPI and async/await for high performance
  • Document Processing: Paragraphs, tables, lists, images, styles, and more
  • Version Control: Track document versions and compare changes
  • Template Management: Create and manage document templates
  • Export Options: Export to PDF, HTML, Markdown, and plain text
  • Comments & Revisions: Add comments and track changes
  • Security: Document encryption, password protection, and permissions
  • Background Tasks: Celery integration for long-running operations
  • Containerized: Docker and Kubernetes ready

๐Ÿ“‹ Table of Contents

๐Ÿš€ Installation

Prerequisites

  • Python 3.10 or higher
  • Docker and Docker Compose (optional)
  • PostgreSQL (optional, SQLite available for development)
  • Redis (for Celery tasks)

Using pip and venv (Recommended)

# Clone the repository
git clone https://github.com/Fu-Jie/MCP-OPENAPI-DOCX.git
cd MCP-OPENAPI-DOCX

# Create virtual environment
python -m venv venv

# Activate virtual environment
# On Linux/macOS:
source venv/bin/activate
# On Windows (Command Prompt):
venv\Scripts\activate.bat
# On Windows (PowerShell):
venv\Scripts\Activate.ps1

# Upgrade pip
pip install --upgrade pip

# Install dependencies
pip install -r requirements.txt

# Copy environment configuration
cp .env.example .env

# Run the application
python main.py

Using Docker

# Clone the repository
git clone https://github.com/Fu-Jie/MCP-OPENAPI-DOCX.git
cd MCP-OPENAPI-DOCX

# Start with Docker Compose
docker-compose up -d

# View logs
docker-compose logs -f api

๐Ÿƒ Quick Start

Start the API Server

# Method 1: Using main.py (Recommended)
python main.py

# Method 2: Using uvicorn directly
python -m uvicorn src.api.main:app --reload --port 8000

# Production mode with multiple workers
python -m uvicorn src.api.main:app --host 0.0.0.0 --port 8000 --workers 4

Access the API

  • API Documentation: http://localhost:8000/docs
  • ReDoc: http://localhost:8000/redoc
  • OpenAPI Schema: http://localhost:8000/openapi.json

Start the MCP Server

# Run MCP server (for AI integrations)
python main.py --mcp

๐Ÿ“– API Documentation

The API provides comprehensive endpoints for document management:

Core Endpoints

Endpoint Method Description
/api/v1/documents GET List all documents
/api/v1/documents POST Create a new document
/api/v1/documents/{id} GET Get document details
/api/v1/documents/{id} PUT Update document
/api/v1/documents/{id} DELETE Delete document

Text Operations

Endpoint Method Description
/api/v1/text/{doc_id}/paragraphs GET List paragraphs
/api/v1/text/{doc_id}/paragraphs POST Add paragraph
/api/v1/text/{doc_id}/paragraphs/{idx} PUT Update paragraph
/api/v1/text/{doc_id}/format POST Apply formatting

Table Operations

Endpoint Method Description
/api/v1/tables/{doc_id} GET List tables
/api/v1/tables/{doc_id} POST Create table
/api/v1/tables/{doc_id}/{idx}/cell PUT Update cell
/api/v1/tables/{doc_id}/{idx}/row POST Add row

See the full API Documentation for complete details.

๐Ÿ”Œ MCP Protocol

This server implements the Model Context Protocol for AI integrations:

Available Tools

  • create_document - Create a new DOCX document
  • open_document - Open an existing document
  • add_paragraph - Add a paragraph to a document
  • add_table - Add a table to a document
  • format_text - Apply text formatting
  • search_replace - Search and replace text
  • export_document - Export to various formats
  • And 80+ more tools...

Example Usage

# Using MCP client
async with MCPClient("http://localhost:8000/mcp") as client:
    result = await client.call_tool(
        "create_document",
        {"name": "My Document"}
    )

See the MCP Protocol Guide for detailed usage.

โš™๏ธ Configuration

Configuration is managed through environment variables. Copy .env.example to .env:

cp .env.example .env

Key Configuration Options

Variable Description Default
DATABASE_URL Database connection URL sqlite+aiosqlite:///./docx_db.sqlite
REDIS_URL Redis connection URL redis://localhost:6379/0
SECRET_KEY JWT secret key (required in production)
DEBUG Enable debug mode false
ENVIRONMENT Environment name development
UPLOAD_DIR Upload directory ./uploads
MAX_UPLOAD_SIZE Max upload size (bytes) 104857600

See .env.example for all available options.

๐Ÿ› ๏ธ Development

Project Structure

mcp-openapi-docx/
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ api/            # FastAPI application
โ”‚   โ”‚   โ”œโ”€โ”€ routes/     # API endpoints
โ”‚   โ”‚   โ””โ”€โ”€ dependencies.py
โ”‚   โ”œโ”€โ”€ core/           # Core configuration
โ”‚   โ”œโ”€โ”€ database/       # Database setup
โ”‚   โ”œโ”€โ”€ handlers/       # DOCX file handlers
โ”‚   โ”œโ”€โ”€ mcp/            # MCP server
โ”‚   โ”œโ”€โ”€ middleware/     # HTTP middleware
โ”‚   โ”œโ”€โ”€ models/         # Data models
โ”‚   โ”œโ”€โ”€ services/       # Business logic
โ”‚   โ”œโ”€โ”€ tasks/          # Celery tasks
โ”‚   โ””โ”€โ”€ utils/          # Utility functions
โ”œโ”€โ”€ tests/              # Test suite
โ”œโ”€โ”€ docs/               # Documentation
โ”œโ”€โ”€ alembic/            # Database migrations
โ”œโ”€โ”€ kubernetes/         # K8s configurations
โ””โ”€โ”€ scripts/            # Utility scripts

Running Locally

# Activate virtual environment
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dev dependencies
pip install -r requirements.txt

# Run linting
ruff check src/
black --check src/
isort --check-only src/

# Run type checking
mypy src/

# Start development server
python main.py
# Or with auto-reload:
python -m uvicorn src.api.main:app --reload

Database Migrations

# Create a new migration
alembic revision --autogenerate -m "description"

# Apply migrations
alembic upgrade head

# Rollback
alembic downgrade -1

๐Ÿงช Testing

# Run all tests
pytest

# Run with coverage
pytest --cov=src --cov-report=html

# Run specific test file
pytest tests/unit/handlers/test_document_handler.py

# Run integration tests
pytest tests/integration/ -v

๐Ÿšข Deployment

Docker Compose (Recommended for Development)

docker-compose up -d

Kubernetes

# Apply configurations
kubectl apply -f kubernetes/

# Check status
kubectl get pods -n docx

Manual Deployment

# Build the image
docker build -t mcp-openapi-docx:latest .

# Run the container
docker run -p 8000:8000 mcp-openapi-docx:latest

See the Deployment Guide for production recommendations.

๐Ÿค Contributing

Contributions are welcome! Please read our contributing guidelines before submitting a pull request.

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ“ž Support


Made with โค๏ธ for the document automation community

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured