MCP-OPENAPI-DOCX
Enterprise-grade document editing and management server that enables AI-powered operations on Microsoft Word DOCX files, including creating, editing, formatting, and exporting documents through both MCP protocol and RESTful API.
README
MCP-OPENAPI-DOCX
Enterprise-grade document editing and management server supporting MCP (Model Context Protocol) and OpenAPI protocols for DOCX documents.
๐ Features
- Complete DOCX Support: Full support for reading, writing, and editing Microsoft Word documents
- MCP Protocol: Implements the Model Context Protocol for AI-powered document operations
- RESTful API: Comprehensive OpenAPI-compliant REST API with Swagger documentation
- Async Architecture: Built with FastAPI and async/await for high performance
- Document Processing: Paragraphs, tables, lists, images, styles, and more
- Version Control: Track document versions and compare changes
- Template Management: Create and manage document templates
- Export Options: Export to PDF, HTML, Markdown, and plain text
- Comments & Revisions: Add comments and track changes
- Security: Document encryption, password protection, and permissions
- Background Tasks: Celery integration for long-running operations
- Containerized: Docker and Kubernetes ready
๐ Table of Contents
- Installation
- Quick Start
- API Documentation
- MCP Protocol
- Configuration
- Development
- Testing
- Deployment
- Contributing
- License
๐ Installation
Prerequisites
- Python 3.10 or higher
- Docker and Docker Compose (optional)
- PostgreSQL (optional, SQLite available for development)
- Redis (for Celery tasks)
Using pip and venv (Recommended)
# Clone the repository
git clone https://github.com/Fu-Jie/MCP-OPENAPI-DOCX.git
cd MCP-OPENAPI-DOCX
# Create virtual environment
python -m venv venv
# Activate virtual environment
# On Linux/macOS:
source venv/bin/activate
# On Windows (Command Prompt):
venv\Scripts\activate.bat
# On Windows (PowerShell):
venv\Scripts\Activate.ps1
# Upgrade pip
pip install --upgrade pip
# Install dependencies
pip install -r requirements.txt
# Copy environment configuration
cp .env.example .env
# Run the application
python main.py
Using Docker
# Clone the repository
git clone https://github.com/Fu-Jie/MCP-OPENAPI-DOCX.git
cd MCP-OPENAPI-DOCX
# Start with Docker Compose
docker-compose up -d
# View logs
docker-compose logs -f api
๐ Quick Start
Start the API Server
# Method 1: Using main.py (Recommended)
python main.py
# Method 2: Using uvicorn directly
python -m uvicorn src.api.main:app --reload --port 8000
# Production mode with multiple workers
python -m uvicorn src.api.main:app --host 0.0.0.0 --port 8000 --workers 4
Access the API
- API Documentation: http://localhost:8000/docs
- ReDoc: http://localhost:8000/redoc
- OpenAPI Schema: http://localhost:8000/openapi.json
Start the MCP Server
# Run MCP server (for AI integrations)
python main.py --mcp
๐ API Documentation
The API provides comprehensive endpoints for document management:
Core Endpoints
| Endpoint | Method | Description |
|---|---|---|
/api/v1/documents |
GET | List all documents |
/api/v1/documents |
POST | Create a new document |
/api/v1/documents/{id} |
GET | Get document details |
/api/v1/documents/{id} |
PUT | Update document |
/api/v1/documents/{id} |
DELETE | Delete document |
Text Operations
| Endpoint | Method | Description |
|---|---|---|
/api/v1/text/{doc_id}/paragraphs |
GET | List paragraphs |
/api/v1/text/{doc_id}/paragraphs |
POST | Add paragraph |
/api/v1/text/{doc_id}/paragraphs/{idx} |
PUT | Update paragraph |
/api/v1/text/{doc_id}/format |
POST | Apply formatting |
Table Operations
| Endpoint | Method | Description |
|---|---|---|
/api/v1/tables/{doc_id} |
GET | List tables |
/api/v1/tables/{doc_id} |
POST | Create table |
/api/v1/tables/{doc_id}/{idx}/cell |
PUT | Update cell |
/api/v1/tables/{doc_id}/{idx}/row |
POST | Add row |
See the full API Documentation for complete details.
๐ MCP Protocol
This server implements the Model Context Protocol for AI integrations:
Available Tools
create_document- Create a new DOCX documentopen_document- Open an existing documentadd_paragraph- Add a paragraph to a documentadd_table- Add a table to a documentformat_text- Apply text formattingsearch_replace- Search and replace textexport_document- Export to various formats- And 80+ more tools...
Example Usage
# Using MCP client
async with MCPClient("http://localhost:8000/mcp") as client:
result = await client.call_tool(
"create_document",
{"name": "My Document"}
)
See the MCP Protocol Guide for detailed usage.
โ๏ธ Configuration
Configuration is managed through environment variables. Copy .env.example to .env:
cp .env.example .env
Key Configuration Options
| Variable | Description | Default |
|---|---|---|
DATABASE_URL |
Database connection URL | sqlite+aiosqlite:///./docx_db.sqlite |
REDIS_URL |
Redis connection URL | redis://localhost:6379/0 |
SECRET_KEY |
JWT secret key | (required in production) |
DEBUG |
Enable debug mode | false |
ENVIRONMENT |
Environment name | development |
UPLOAD_DIR |
Upload directory | ./uploads |
MAX_UPLOAD_SIZE |
Max upload size (bytes) | 104857600 |
See .env.example for all available options.
๐ ๏ธ Development
Project Structure
mcp-openapi-docx/
โโโ src/
โ โโโ api/ # FastAPI application
โ โ โโโ routes/ # API endpoints
โ โ โโโ dependencies.py
โ โโโ core/ # Core configuration
โ โโโ database/ # Database setup
โ โโโ handlers/ # DOCX file handlers
โ โโโ mcp/ # MCP server
โ โโโ middleware/ # HTTP middleware
โ โโโ models/ # Data models
โ โโโ services/ # Business logic
โ โโโ tasks/ # Celery tasks
โ โโโ utils/ # Utility functions
โโโ tests/ # Test suite
โโโ docs/ # Documentation
โโโ alembic/ # Database migrations
โโโ kubernetes/ # K8s configurations
โโโ scripts/ # Utility scripts
Running Locally
# Activate virtual environment
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dev dependencies
pip install -r requirements.txt
# Run linting
ruff check src/
black --check src/
isort --check-only src/
# Run type checking
mypy src/
# Start development server
python main.py
# Or with auto-reload:
python -m uvicorn src.api.main:app --reload
Database Migrations
# Create a new migration
alembic revision --autogenerate -m "description"
# Apply migrations
alembic upgrade head
# Rollback
alembic downgrade -1
๐งช Testing
# Run all tests
pytest
# Run with coverage
pytest --cov=src --cov-report=html
# Run specific test file
pytest tests/unit/handlers/test_document_handler.py
# Run integration tests
pytest tests/integration/ -v
๐ข Deployment
Docker Compose (Recommended for Development)
docker-compose up -d
Kubernetes
# Apply configurations
kubectl apply -f kubernetes/
# Check status
kubectl get pods -n docx
Manual Deployment
# Build the image
docker build -t mcp-openapi-docx:latest .
# Run the container
docker run -p 8000:8000 mcp-openapi-docx:latest
See the Deployment Guide for production recommendations.
๐ค Contributing
Contributions are welcome! Please read our contributing guidelines before submitting a pull request.
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
๐ License
This project is licensed under the MIT License - see the LICENSE file for details.
๐ Support
- Documentation: docs/
- Issues: GitHub Issues
- Discussions: GitHub Discussions
Made with โค๏ธ for the document automation community
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.