MCP Multi-Language Sandbox
Enables local, Docker-isolated code execution across six programming languages including Python, Rust, and TypeScript. It features pre-warmed container pooling, persistent sessions, and built-in support for machine learning libraries.
README
MCP Multi-Language Sandbox
Execute code securely in 6 programming languages with Docker isolation, designed for Claude Code via Model Context Protocol (MCP).
What is this?
A local MCP server that lets Claude execute code in isolated Docker containers. Think of it as your own private code sandbox - 100% free, 100% local, no cloud dependencies.
Why use this instead of cloud sandboxes?
- Free: No per-execution costs (vs ~$0.10/run on cloud services)
- Fast: 0ms container acquisition with pooling (vs 2-5s cold starts)
- Private: Code never leaves your machine
- Customizable: Add your own languages, packages, security rules
Features
- 6 Languages: Python, TypeScript, JavaScript, Go, Rust, Bash
- Container Pooling: Pre-warmed containers for instant execution
- Package Caching: Install once, reuse forever (SHA256-based)
- ML Runtime: numpy, pandas, sklearn, torch, mlx pre-installed
- Security: Seccomp profiles, capability dropping, audit logging
- Sessions: Persistent state with TTL and auto-cleanup
Quick Start
Prerequisites
- Node.js >= 18.0.0
- Docker Desktop
- Claude Code CLI (optional, for MCP integration)
Installation
# Clone the repository
git clone https://github.com/Pit-CL/mcp-multilang-sandbox.git
cd mcp-multilang-sandbox
# Install dependencies
npm install
# Build
npm run build
# Run tests (optional)
npm run test:mcp
Add to Claude Code
# Add as MCP server
claude mcp add multilang-sandbox node /path/to/mcp-multilang-sandbox/dist/mcp/server.js
# Verify it's connected
claude mcp list
# Should show: multilang-sandbox ✓ Connected
Manual Configuration
Add to your Claude settings (~/.claude.json or VS Code settings):
{
"mcpServers": {
"multilang-sandbox": {
"command": "node",
"args": ["/path/to/mcp-multilang-sandbox/dist/mcp/server.js"],
"env": {
"LOG_LEVEL": "info"
}
}
}
}
Usage
Once configured, Claude can use these tools:
Execute Code
// Python
sandbox_execute({ language: 'python', code: 'print("Hello!")' })
// TypeScript
sandbox_execute({ language: 'typescript', code: 'console.log("Hello!")' })
// With ML libraries (numpy, pandas, sklearn, torch)
sandbox_execute({
language: 'python',
code: 'import numpy as np; print(np.array([1,2,3]))',
ml: true
})
Persistent Sessions
// Create a session
sandbox_session({ action: 'create', name: 'my-project', language: 'python' })
// Execute in session (state persists)
sandbox_execute({ language: 'python', code: 'x = 42', session: 'my-project' })
sandbox_execute({ language: 'python', code: 'print(x)', session: 'my-project' }) // prints 42
// Install packages
sandbox_install({ session: 'my-project', packages: ['pandas', 'requests'] })
// Cleanup
sandbox_session({ action: 'destroy', name: 'my-project' })
File Operations
// Write a file
sandbox_file_ops({ session: 'my-project', operation: 'write', path: 'data.csv', content: 'a,b\n1,2' })
// Read it back
sandbox_file_ops({ session: 'my-project', operation: 'read', path: 'data.csv' })
System Stats
// View pool, cache, and session stats
sandbox_inspect({ target: 'all' })
// Security audit
sandbox_security({ action: 'stats' })
MCP Tools Reference
| Tool | Description |
|---|---|
sandbox_execute |
Execute code in any supported language |
sandbox_session |
Create/list/pause/resume/destroy sessions |
sandbox_install |
Install packages with caching |
sandbox_file_ops |
Read/write/list/delete files in sessions |
sandbox_inspect |
View system stats (pool, cache, sessions) |
sandbox_security |
View audit logs and security events |
Architecture
┌─────────────────────────────────────────────────────────┐
│ Claude / MCP Client │
└───────────────────────────┬─────────────────────────────┘
│ JSON-RPC (stdio)
┌───────────────────────────▼─────────────────────────────┐
│ MCP Sandbox Server │
│ ┌────────────────────────────────────────────────────┐ │
│ │ Tools: execute | session | install | file_ops │ │
│ │ inspect | security │ │
│ ├────────────────────────────────────────────────────┤ │
│ │ Core: ContainerPool | PackageCache | Sessions │ │
│ ├────────────────────────────────────────────────────┤ │
│ │ Security: Seccomp | Capabilities | AuditLogger │ │
│ ├────────────────────────────────────────────────────┤ │
│ │ Runtimes: Python | TS | JS | Go | Rust | Bash │ │
│ └────────────────────────────────────────────────────┘ │
└───────────────────────────┬─────────────────────────────┘
│ Dockerode
┌───────────────────────────▼─────────────────────────────┐
│ Docker Engine │
│ [Container Pool] [Active Sessions] [Image Cache] │
└─────────────────────────────────────────────────────────┘
Security
6 Layers of Protection
- Code Validation - Pattern blocklist (os, subprocess, eval, exec)
- Seccomp Profiles - Syscall filtering per language
- Capability Dropping - CAP_DROP ALL
- Network Isolation - NetworkMode: none
- Resource Limits - Memory, CPU, PIDs, ulimits
- Audit Logging - All operations tracked
Blocked Syscalls
ptrace, mount, umount, kexec_load, init_module, delete_module, reboot, bpf, userfaultfd, and more
Performance
| Metric | Value |
|---|---|
| Pool hit (warm) | 0ms |
| Pool miss (cold) | ~80-100ms |
| Session create | ~85ms |
| Package cache hit | <1ms |
| Python execution | ~60ms |
| Bash execution | ~35ms |
Development
# Watch mode (auto-rebuild)
npm run dev
# Type checking
npm run typecheck
# Run tests
npm run test:all # All tests
npm run test:mcp # MCP tools (19 tests)
npm run test:runtimes # Language runtimes
# Clean build
npm run clean && npm run build
Project Structure
src/
├── mcp/server.ts # MCP server & tool handlers
├── core/
│ ├── ContainerPool.ts # Pre-warmed container pooling
│ ├── PackageCache.ts # SHA256-based package caching
│ └── SessionManager.ts # Persistent sessions with TTL
├── security/
│ ├── seccomp.ts # Syscall filtering profiles
│ └── AuditLogger.ts # Operation audit logging
├── runtimes/
│ ├── PythonRuntime.ts # + PythonMLRuntime for ML
│ ├── TypeScriptRuntime.ts
│ ├── JavaScriptRuntime.ts
│ ├── GoRuntime.ts
│ ├── RustRuntime.ts
│ └── BashRuntime.ts
└── docker/
├── DockerClient.ts # Dockerode wrapper
└── Container.ts # Container abstraction
Contributing
Issues and PRs welcome! This started as a personal project to replace cloud sandboxes with something local and free.
License
MIT
Credits
Built with @modelcontextprotocol/sdk, Dockerode, and Zod.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.