MCP Multi-Agent Orchestration Server

MCP Multi-Agent Orchestration Server

Orchestrates multiple AI agents to process complex queries by intelligently splitting tasks, executing them in parallel, and synthesizing results using local Ollama LLM inference.

Category
Visit Server

README

MCP Server with Multi-Agent Orchestration

A Model Context Protocol (MCP) server with multi-agent orchestration capabilities, featuring a simple web interface for querying agents. This system uses local Ollama for LLM inference and orchestrates multiple agents to process complex queries.

Features

  • MCP-Compliant: Implements Model Context Protocol standards
  • FastAPI Server: Modern async Python web framework
  • Multi-Agent Orchestration: Intelligent query splitting and result synthesis
  • Local LLM Support: Uses Ollama for local LLM inference
  • Web Interface: Simple Next.js frontend for querying the server
  • Automatic Agent Discovery: Agents are automatically discovered and registered
  • RESTful API: Standard HTTP endpoints for agent management

Quick Start

For detailed setup instructions, see SETUP.md

Prerequisites

  • Python 3.11+
  • Node.js 18+
  • Ollama installed and running
  • Model pulled: ollama pull llama3:latest

Quick Installation

# 1. Clone repository
git clone <repository-url>
cd mcp-server-orchestration  # or whatever you name the repository

# 2. Set up Python backend
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt

# 3. Set up frontend
cd frontend
npm install
cd ..

# 4. Configure environment
cp env.example .env
# Edit .env with your settings

# 5. Start Ollama (if not running)
# macOS: Open Ollama.app
# Linux: ollama serve

# 6. Start servers
# Terminal 1: MCP Server
source venv/bin/activate
python3 -m uvicorn backend.server.mcp_server:app --host 0.0.0.0 --port 8000

# Terminal 2: Frontend
cd frontend
npm run dev

Access the frontend at http://localhost:3000

Architecture

Components

  1. MCP Server (Python/FastAPI)

    • Orchestrates multi-agent workflows
    • Uses Ollama for LLM inference
    • Runs on port 8000
  2. Frontend (Next.js/React)

    • Simple chat interface
    • Connects to MCP server
    • Runs on port 3000
  3. Agents

    • Internal Agent: Simulates internal document retrieval
    • External Agent: Simulates external database queries
  4. Orchestrator

    • Analyzes user queries using LLM
    • Splits queries into agent-specific tasks
    • Synthesizes results from multiple agents

Workflow

User Query → Orchestrator → Query Analysis (LLM)
                              ↓
                    Determine Agents Needed
                              ↓
                    Generate Optimized Queries
                              ↓
                    Execute Agents (Parallel)
                              ↓
                    Compare & Synthesize Results (LLM)
                              ↓
                    Return Final Answer

API Endpoints

MCP Server (Port 8000)

  • GET /health - Health check
  • POST /orchestrate - Process user query
    {
      "query": "your query here"
    }
    
  • GET /mcp/agents - List all registered agents
  • GET /mcp/resources - List all MCP resources
  • POST /discover - Trigger agent discovery

Frontend (Port 3000)

  • GET / - Main chat interface
  • POST /api/chat - Chat endpoint (forwards to MCP server)

Project Structure

mcp-server-orchestration/        # Project root
├── backend/                      # Backend MCP Server (Python/FastAPI)
│   ├── server/
│   │   └── mcp_server.py          # FastAPI server
│   ├── agents/
│   │   ├── internal_agent.py      # Internal document agent
│   │   └── external_agent.py      # External database agent
│   ├── orchestrator/
│   │   └── orchestrator.py        # Query orchestration
│   ├── services/
│   │   └── ollama_service.py      # Ollama API wrapper
│   ├── interfaces/
│   │   └── agent.py               # Agent interface
│   ├── registry/
│   │   └── registry.py            # Agent registry
│   └── discovery/
│       └── agent_discovery.py     # Auto-discovery
├── frontend/                      # Frontend UI (Next.js)
│   ├── app/
│   │   ├── api/chat/route.ts      # Chat API
│   │   └── components/chat.tsx    # Chat UI
│   └── package.json
├── requirements.txt               # Python dependencies
├── env.example                    # Environment template
├── SETUP.md                       # Detailed setup guide
└── README.md                      # This file

Configuration

Create a .env file from env.example:

PORT=8000
LOG_LEVEL=INFO
ENV=development
ALLOWED_ORIGINS=*
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_MODEL=llama3:latest

Documentation

  • SETUP.md - Comprehensive setup guide with step-by-step instructions
  • QUICKSTART.md - Quick start guide (if exists)

Development

Running Tests

pytest

Viewing Logs

MCP server logs are written to /tmp/mcp_server.log:

tail -f /tmp/mcp_server.log

Helper Scripts

  • ./start_server.sh - Start MCP server with log viewing
  • ./view_logs.sh - View MCP server logs

Troubleshooting

See SETUP.md for detailed troubleshooting guide.

Common issues:

  • Ollama not running: Start Ollama and verify with curl http://localhost:11434/api/tags
  • Port conflicts: Kill processes on ports 8000 or 3000
  • Module not found: Ensure virtual environment is activated and dependencies installed

License

[Add your license information here]

Contributing

  1. Create a feature branch
  2. Make your changes
  3. Add tests
  4. Submit a pull request

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured