MCP Multi-Agent Orchestration Server
Orchestrates multiple AI agents to process complex queries by intelligently splitting tasks, executing them in parallel, and synthesizing results using local Ollama LLM inference.
README
MCP Server with Multi-Agent Orchestration
A Model Context Protocol (MCP) server with multi-agent orchestration capabilities, featuring a simple web interface for querying agents. This system uses local Ollama for LLM inference and orchestrates multiple agents to process complex queries.
Features
- MCP-Compliant: Implements Model Context Protocol standards
- FastAPI Server: Modern async Python web framework
- Multi-Agent Orchestration: Intelligent query splitting and result synthesis
- Local LLM Support: Uses Ollama for local LLM inference
- Web Interface: Simple Next.js frontend for querying the server
- Automatic Agent Discovery: Agents are automatically discovered and registered
- RESTful API: Standard HTTP endpoints for agent management
Quick Start
For detailed setup instructions, see SETUP.md
Prerequisites
- Python 3.11+
- Node.js 18+
- Ollama installed and running
- Model pulled:
ollama pull llama3:latest
Quick Installation
# 1. Clone repository
git clone <repository-url>
cd mcp-server-orchestration # or whatever you name the repository
# 2. Set up Python backend
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
# 3. Set up frontend
cd frontend
npm install
cd ..
# 4. Configure environment
cp env.example .env
# Edit .env with your settings
# 5. Start Ollama (if not running)
# macOS: Open Ollama.app
# Linux: ollama serve
# 6. Start servers
# Terminal 1: MCP Server
source venv/bin/activate
python3 -m uvicorn backend.server.mcp_server:app --host 0.0.0.0 --port 8000
# Terminal 2: Frontend
cd frontend
npm run dev
Access the frontend at http://localhost:3000
Architecture
Components
-
MCP Server (Python/FastAPI)
- Orchestrates multi-agent workflows
- Uses Ollama for LLM inference
- Runs on port 8000
-
Frontend (Next.js/React)
- Simple chat interface
- Connects to MCP server
- Runs on port 3000
-
Agents
- Internal Agent: Simulates internal document retrieval
- External Agent: Simulates external database queries
-
Orchestrator
- Analyzes user queries using LLM
- Splits queries into agent-specific tasks
- Synthesizes results from multiple agents
Workflow
User Query → Orchestrator → Query Analysis (LLM)
↓
Determine Agents Needed
↓
Generate Optimized Queries
↓
Execute Agents (Parallel)
↓
Compare & Synthesize Results (LLM)
↓
Return Final Answer
API Endpoints
MCP Server (Port 8000)
GET /health- Health checkPOST /orchestrate- Process user query{ "query": "your query here" }GET /mcp/agents- List all registered agentsGET /mcp/resources- List all MCP resourcesPOST /discover- Trigger agent discovery
Frontend (Port 3000)
GET /- Main chat interfacePOST /api/chat- Chat endpoint (forwards to MCP server)
Project Structure
mcp-server-orchestration/ # Project root
├── backend/ # Backend MCP Server (Python/FastAPI)
│ ├── server/
│ │ └── mcp_server.py # FastAPI server
│ ├── agents/
│ │ ├── internal_agent.py # Internal document agent
│ │ └── external_agent.py # External database agent
│ ├── orchestrator/
│ │ └── orchestrator.py # Query orchestration
│ ├── services/
│ │ └── ollama_service.py # Ollama API wrapper
│ ├── interfaces/
│ │ └── agent.py # Agent interface
│ ├── registry/
│ │ └── registry.py # Agent registry
│ └── discovery/
│ └── agent_discovery.py # Auto-discovery
├── frontend/ # Frontend UI (Next.js)
│ ├── app/
│ │ ├── api/chat/route.ts # Chat API
│ │ └── components/chat.tsx # Chat UI
│ └── package.json
├── requirements.txt # Python dependencies
├── env.example # Environment template
├── SETUP.md # Detailed setup guide
└── README.md # This file
Configuration
Create a .env file from env.example:
PORT=8000
LOG_LEVEL=INFO
ENV=development
ALLOWED_ORIGINS=*
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_MODEL=llama3:latest
Documentation
- SETUP.md - Comprehensive setup guide with step-by-step instructions
- QUICKSTART.md - Quick start guide (if exists)
Development
Running Tests
pytest
Viewing Logs
MCP server logs are written to /tmp/mcp_server.log:
tail -f /tmp/mcp_server.log
Helper Scripts
./start_server.sh- Start MCP server with log viewing./view_logs.sh- View MCP server logs
Troubleshooting
See SETUP.md for detailed troubleshooting guide.
Common issues:
- Ollama not running: Start Ollama and verify with
curl http://localhost:11434/api/tags - Port conflicts: Kill processes on ports 8000 or 3000
- Module not found: Ensure virtual environment is activated and dependencies installed
License
[Add your license information here]
Contributing
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.