MCP MixSearch
Enables advanced web search across multiple search engines (Brave, DuckDuckGo, Google, Bing, Yandex) with intelligent backend selection, full content extraction, and advanced filtering by time, language, geography, and content type.
README
MCP MixSearch
A comprehensive Model Context Protocol (MCP) server for advanced web search functionality with multi-engine support and intelligent backend selection.
Features
- Multi-Engine Search: Access to multiple search engines (Brave, DuckDuckGo, Google, Bing, Yandex) via DDGS library
- Advanced Filtering: Time-based, geographic, language, and content type filtering
- Intelligent Backend Selection: Automatically chooses optimal search engine based on parameters
- Full Content Extraction: Extract readable content from search results and specific URLs
- Dual Interface: Both MCP protocol and REST API with identical functionality
- Graceful Fallbacks: Browser-based search for reliability when APIs fail
Quick Start
Install and Run
# Install
uv sync
# Run in MCP stdio mode (default)
uv run mcp-mixsearch
# Run in MCP HTTP mode
uv run mcp-mixsearch --mode mcp
# Or run with REST API
uv run mcp-mixsearch --mode rest
Use as a Dependency
See Using as Dependency for creating your own MCP servers.
Configuration
Set environment variables in a .env file or export them:
# Server Configuration
MCP_HOST=localhost
MCP_PORT=3000
MCP_TRANSPORT=stdio # or 'http'
MCP_AUTH_ENABLED=true
MCP_CORS_ORIGINS="http://localhost:3000,http://localhost:5173"
# Web Search Configuration
BRAVE_API_KEY=your_brave_api_key_here
MAX_CONTENT_LENGTH=500000
MAX_CONCURRENT_REQUESTS=5
# Logging
LOG_LEVEL=INFO
Running Modes
mcp-mixsearch supports three distinct running modes:
1. MCP HTTP Mode
Runs MCP server over HTTP without REST API endpoints.
uv run mcp-mixsearch --mode mcp
2. MCP Stdio Mode (Default)
Runs MCP server over stdio without REST API endpoints.
uv run mcp-mixsearch --mode stdio
# Or just run without flags (default)
uv run mcp-mixsearch
3. REST API + MCP Mode
Runs both REST API endpoints and MCP protocol over HTTP.
uv run mcp-mixsearch --mode rest
Environment Variables
You can also control modes using environment variables:
# MCP over HTTP
MCP_TRANSPORT=http MCP_ONLY=true uv run mcp-mixsearch
# MCP over stdio
MCP_TRANSPORT=stdio MCP_ONLY=true uv run mcp-mixsearch
# REST API + MCP over HTTP
MCP_TRANSPORT=http MCP_ONLY=false uv run mcp-mixsearch
In HTTP modes, the server runs on http://localhost:3000 with:
- MCP endpoint:
http://localhost:3000/mcp - REST API docs:
http://localhost:3000/docs(when REST API enabled) - Health check:
http://localhost:3000/health(when REST API enabled)
Available Tools
MCP Tools
-
full_web_search
- Comprehensive web search with content extraction
- Multi-engine search with intelligent backend selection
- Advanced filtering: time, language, geographic, content type filters
- Args: query, limit (1-10), include_content, max_content_length, top_n, recency_days, source, language, country
-
get_web_search_summaries
- Lightweight search returning only summaries
- Same advanced filtering capabilities as full_web_search
- Args: query, limit (1-10), top_n, recency_days, source, language, country
-
get_single_web_page_content
- Extract content from a specific URL
- Args: url, max_content_length
REST API Endpoints
GET /search/full_web_search- Same asfull_web_searchwith identical parametersGET /search/get_web_search_summaries- Same asget_web_search_summarieswith identical parametersGET /search/get_single_web_page_content- Same asget_single_web_page_content
Advanced Search Features
Multi-Engine Architecture
- Primary: DDGS library with multiple backend support (Brave, DuckDuckGo, Google, Bing, Yandex)
- Intelligent backend selection: Automatically chooses best engine based on parameters
- Fallbacks: Browser-based search for reliability
Supported Parameters
- Core:
query(required),limit/top_n,include_content,max_content_length - Time filtering:
recency_days(1=day, 7=week, 30=month, 365=year) - Content type:
source("news", "images", "videos", "web") - Language filtering:
language(e.g., "en", "es", "fr", "de") - Geographic filtering:
country(e.g., "US", "GB", "FR", "DE")
Usage Examples
Basic search:
# MCP
{"query": "AI developments", "limit": 5}
# REST
GET /search/get_web_search_summaries?query=AI%20developments&limit=5
Advanced filtering:
# MCP
{"query": "climate policy", "country": "FR", "language": "fr", "recency_days": 30, "source": "news"}
# REST
GET /search/get_web_search_summaries?query=climate%20policy&country=FR&language=fr&recency_days=30&source=news
Project Structure
mcp-mixsearch/
├── features/ # Feature implementations
│ └── web_search/ # Web search feature
│ ├── __init__.py
│ ├── models.py # Pydantic models
│ ├── service.py # Multi-engine search logic
│ ├── tool.py # MCP tool registrations
│ ├── routes.py # REST API routes
│ ├── instructions.md # Full web search documentation
│ ├── instructions_summaries.md # Search summaries documentation
│ └── instructions_single_page.md # Single page extraction documentation
├── config.py # Configuration management
├── server.py # Main server entry point
├── pyproject.toml # Project configuration
├── uv.lock # Dependency lock file
├── README.md
└── LICENSE
Development
Testing
pytest
Building
uv build
Dependencies
- mcp-weather: Core MCP infrastructure
- fastmcp: MCP protocol implementation
- httpx: HTTP client for content extraction
- playwright: Browser automation for dynamic content
- beautifulsoup4: HTML parsing
- fake-useragent: Random user agents
License
See LICENSE file.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.