MCP Midjourney
Enables AI image and video generation using Midjourney through the AceDataCloud API. It supports comprehensive features including image creation, transformation, blending, editing, and video generation directly within MCP-compatible clients.
README
MCP Midjourney
A Model Context Protocol (MCP) server for AI image and video generation using Midjourney through the AceDataCloud API.
Generate AI images, videos, and manage creative projects directly from Claude, VS Code, or any MCP-compatible client.
Features
- Image Generation - Create AI-generated images from text prompts
- Image Transformation - Upscale, create variations, zoom, and pan images
- Image Blending - Combine multiple images into creative fusions
- Reference-Based Generation - Use existing images as inspiration
- Image Description - Get AI descriptions of images (reverse prompt)
- Image Editing - Edit images with text prompts and masks
- Video Generation - Create videos from text and reference images
- Video Extension - Extend existing videos to make them longer
- Translation - Translate Chinese prompts to English
- Task Tracking - Monitor generation progress and retrieve results
Quick Start
1. Get API Token
Get your API token from AceDataCloud Platform:
- Sign up or log in
- Navigate to Midjourney Imagine API
- Click "Acquire" to get your token
2. Install
# Clone the repository
git clone https://github.com/AceDataCloud/mcp-midjourney.git
cd mcp-midjourney
# Install with pip
pip install -e .
# Or with uv (recommended)
uv pip install -e .
3. Configure
# Copy example environment file
cp .env.example .env
# Edit with your API token
echo "ACEDATACLOUD_API_TOKEN=your_token_here" > .env
4. Run
# Run the server
mcp-midjourney
# Or with Python directly
python main.py
Claude Desktop Integration
Add to your Claude Desktop configuration:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"midjourney": {
"command": "mcp-midjourney",
"env": {
"ACEDATACLOUD_API_TOKEN": "your_api_token_here"
}
}
}
}
Or if using uv:
{
"mcpServers": {
"midjourney": {
"command": "uv",
"args": ["run", "--directory", "/path/to/mcp-midjourney", "mcp-midjourney"],
"env": {
"ACEDATACLOUD_API_TOKEN": "your_api_token_here"
}
}
}
}
Available Tools
Image Generation
| Tool | Description |
|---|---|
midjourney_imagine |
Generate images from a text prompt (creates 2x2 grid) |
midjourney_transform |
Transform images (upscale, variation, zoom, pan) |
midjourney_blend |
Blend multiple images together |
midjourney_with_reference |
Generate using a reference image as inspiration |
Image Editing
| Tool | Description |
|---|---|
midjourney_edit |
Edit an existing image with text prompt |
midjourney_describe |
Get AI descriptions of an image (reverse prompt) |
Video
| Tool | Description |
|---|---|
midjourney_generate_video |
Generate video from text and reference image |
midjourney_extend_video |
Extend existing video to make it longer |
Utility
| Tool | Description |
|---|---|
midjourney_translate |
Translate Chinese text to English for prompts |
Tasks
| Tool | Description |
|---|---|
midjourney_get_task |
Query a single task status |
midjourney_get_tasks_batch |
Query multiple tasks at once |
Information
| Tool | Description |
|---|---|
midjourney_list_actions |
List available API actions |
midjourney_get_prompt_guide |
Get prompt writing guide |
midjourney_list_transform_actions |
List transformation actions |
Usage Examples
Generate Image from Prompt
User: Create a cyberpunk city at night
Claude: I'll generate a cyberpunk city image for you.
[Calls midjourney_imagine with prompt="Cyberpunk city at night, neon lights, rain, futuristic, detailed --ar 16:9"]
Upscale an Image
User: Upscale the second image
Claude: I'll upscale the top-right image from the grid.
[Calls midjourney_transform with image_id and action="upscale2"]
Blend Multiple Images
User: Blend these two images: [url1] and [url2]
Claude: I'll blend these images together.
[Calls midjourney_blend with image_urls=[url1, url2]]
Generate Video
User: Animate this image [url] with gentle movement
Claude: I'll create a video from this image.
[Calls midjourney_generate_video with image_url and prompt="Gentle camera movement, cinematic"]
Generation Modes
| Mode | Description |
|---|---|
fast |
Recommended for most use cases (default) |
turbo |
Faster generation, uses more credits |
relax |
Slower generation, cheaper |
Configuration
Environment Variables
| Variable | Description | Default |
|---|---|---|
ACEDATACLOUD_API_TOKEN |
API token from AceDataCloud | Required |
ACEDATACLOUD_API_BASE_URL |
API base URL | https://api.acedata.cloud |
MIDJOURNEY_DEFAULT_MODE |
Default generation mode | fast |
MIDJOURNEY_REQUEST_TIMEOUT |
Request timeout in seconds | 180 |
LOG_LEVEL |
Logging level | INFO |
Command Line Options
mcp-midjourney --help
Options:
--version Show version
--transport Transport mode: stdio (default) or http
--port Port for HTTP transport (default: 8000)
Development
Setup Development Environment
# Clone repository
git clone https://github.com/AceDataCloud/mcp-midjourney.git
cd mcp-midjourney
# Create virtual environment
python -m venv .venv
source .venv/bin/activate # or `.venv\Scripts\activate` on Windows
# Install with dev dependencies
pip install -e ".[dev,test]"
Run Tests
# Run unit tests
pytest
# Run with coverage
pytest --cov=core --cov=tools
# Run integration tests (requires API token)
pytest tests/test_integration.py -m integration
Code Quality
# Format code
ruff format .
# Lint code
ruff check .
# Type check
mypy core tools
Build & Publish
# Install build dependencies
pip install -e ".[release]"
# Build package
python -m build
# Upload to PyPI
twine upload dist/*
Project Structure
MCPMidjourney/
├── core/ # Core modules
│ ├── __init__.py
│ ├── client.py # HTTP client for Midjourney API
│ ├── config.py # Configuration management
│ ├── exceptions.py # Custom exceptions
│ ├── server.py # MCP server initialization
│ ├── types.py # Type definitions
│ └── utils.py # Utility functions
├── tools/ # MCP tool definitions
│ ├── __init__.py
│ ├── describe_tools.py # Image description tools
│ ├── edits_tools.py # Image editing tools
│ ├── imagine_tools.py # Image generation tools
│ ├── info_tools.py # Information tools
│ ├── task_tools.py # Task query tools
│ ├── translate_tools.py # Translation tools
│ └── video_tools.py # Video generation tools
├── prompts/ # MCP prompt templates
│ └── __init__.py
├── tests/ # Test suite
├── .env.example # Environment template
├── .gitignore
├── CHANGELOG.md
├── LICENSE
├── main.py # Entry point
├── pyproject.toml # Project configuration
└── README.md
API Reference
This server wraps the AceDataCloud Midjourney API:
- Midjourney Imagine API - Image generation
- Midjourney Describe API - Image description
- Midjourney Tasks API - Task queries
- Midjourney Edits API - Image editing
- Midjourney Videos API - Video generation
- Midjourney Translate API - Translation
Contributing
Contributions are welcome! Please:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing) - Open a Pull Request
License
MIT License - see LICENSE for details.
Links
Made with love by AceDataCloud
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.