MCP Midjourney

MCP Midjourney

Enables AI image and video generation using Midjourney through the AceDataCloud API. It supports comprehensive features including image creation, transformation, blending, editing, and video generation directly within MCP-compatible clients.

Category
Visit Server

README

MCP Midjourney

Python 3.10+ License: MIT MCP

A Model Context Protocol (MCP) server for AI image and video generation using Midjourney through the AceDataCloud API.

Generate AI images, videos, and manage creative projects directly from Claude, VS Code, or any MCP-compatible client.

Features

  • Image Generation - Create AI-generated images from text prompts
  • Image Transformation - Upscale, create variations, zoom, and pan images
  • Image Blending - Combine multiple images into creative fusions
  • Reference-Based Generation - Use existing images as inspiration
  • Image Description - Get AI descriptions of images (reverse prompt)
  • Image Editing - Edit images with text prompts and masks
  • Video Generation - Create videos from text and reference images
  • Video Extension - Extend existing videos to make them longer
  • Translation - Translate Chinese prompts to English
  • Task Tracking - Monitor generation progress and retrieve results

Quick Start

1. Get API Token

Get your API token from AceDataCloud Platform:

  1. Sign up or log in
  2. Navigate to Midjourney Imagine API
  3. Click "Acquire" to get your token

2. Install

# Clone the repository
git clone https://github.com/AceDataCloud/mcp-midjourney.git
cd mcp-midjourney

# Install with pip
pip install -e .

# Or with uv (recommended)
uv pip install -e .

3. Configure

# Copy example environment file
cp .env.example .env

# Edit with your API token
echo "ACEDATACLOUD_API_TOKEN=your_token_here" > .env

4. Run

# Run the server
mcp-midjourney

# Or with Python directly
python main.py

Claude Desktop Integration

Add to your Claude Desktop configuration:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "midjourney": {
      "command": "mcp-midjourney",
      "env": {
        "ACEDATACLOUD_API_TOKEN": "your_api_token_here"
      }
    }
  }
}

Or if using uv:

{
  "mcpServers": {
    "midjourney": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/mcp-midjourney", "mcp-midjourney"],
      "env": {
        "ACEDATACLOUD_API_TOKEN": "your_api_token_here"
      }
    }
  }
}

Available Tools

Image Generation

Tool Description
midjourney_imagine Generate images from a text prompt (creates 2x2 grid)
midjourney_transform Transform images (upscale, variation, zoom, pan)
midjourney_blend Blend multiple images together
midjourney_with_reference Generate using a reference image as inspiration

Image Editing

Tool Description
midjourney_edit Edit an existing image with text prompt
midjourney_describe Get AI descriptions of an image (reverse prompt)

Video

Tool Description
midjourney_generate_video Generate video from text and reference image
midjourney_extend_video Extend existing video to make it longer

Utility

Tool Description
midjourney_translate Translate Chinese text to English for prompts

Tasks

Tool Description
midjourney_get_task Query a single task status
midjourney_get_tasks_batch Query multiple tasks at once

Information

Tool Description
midjourney_list_actions List available API actions
midjourney_get_prompt_guide Get prompt writing guide
midjourney_list_transform_actions List transformation actions

Usage Examples

Generate Image from Prompt

User: Create a cyberpunk city at night

Claude: I'll generate a cyberpunk city image for you.
[Calls midjourney_imagine with prompt="Cyberpunk city at night, neon lights, rain, futuristic, detailed --ar 16:9"]

Upscale an Image

User: Upscale the second image

Claude: I'll upscale the top-right image from the grid.
[Calls midjourney_transform with image_id and action="upscale2"]

Blend Multiple Images

User: Blend these two images: [url1] and [url2]

Claude: I'll blend these images together.
[Calls midjourney_blend with image_urls=[url1, url2]]

Generate Video

User: Animate this image [url] with gentle movement

Claude: I'll create a video from this image.
[Calls midjourney_generate_video with image_url and prompt="Gentle camera movement, cinematic"]

Generation Modes

Mode Description
fast Recommended for most use cases (default)
turbo Faster generation, uses more credits
relax Slower generation, cheaper

Configuration

Environment Variables

Variable Description Default
ACEDATACLOUD_API_TOKEN API token from AceDataCloud Required
ACEDATACLOUD_API_BASE_URL API base URL https://api.acedata.cloud
MIDJOURNEY_DEFAULT_MODE Default generation mode fast
MIDJOURNEY_REQUEST_TIMEOUT Request timeout in seconds 180
LOG_LEVEL Logging level INFO

Command Line Options

mcp-midjourney --help

Options:
  --version          Show version
  --transport        Transport mode: stdio (default) or http
  --port             Port for HTTP transport (default: 8000)

Development

Setup Development Environment

# Clone repository
git clone https://github.com/AceDataCloud/mcp-midjourney.git
cd mcp-midjourney

# Create virtual environment
python -m venv .venv
source .venv/bin/activate  # or `.venv\Scripts\activate` on Windows

# Install with dev dependencies
pip install -e ".[dev,test]"

Run Tests

# Run unit tests
pytest

# Run with coverage
pytest --cov=core --cov=tools

# Run integration tests (requires API token)
pytest tests/test_integration.py -m integration

Code Quality

# Format code
ruff format .

# Lint code
ruff check .

# Type check
mypy core tools

Build & Publish

# Install build dependencies
pip install -e ".[release]"

# Build package
python -m build

# Upload to PyPI
twine upload dist/*

Project Structure

MCPMidjourney/
├── core/                   # Core modules
│   ├── __init__.py
│   ├── client.py          # HTTP client for Midjourney API
│   ├── config.py          # Configuration management
│   ├── exceptions.py      # Custom exceptions
│   ├── server.py          # MCP server initialization
│   ├── types.py           # Type definitions
│   └── utils.py           # Utility functions
├── tools/                  # MCP tool definitions
│   ├── __init__.py
│   ├── describe_tools.py  # Image description tools
│   ├── edits_tools.py     # Image editing tools
│   ├── imagine_tools.py   # Image generation tools
│   ├── info_tools.py      # Information tools
│   ├── task_tools.py      # Task query tools
│   ├── translate_tools.py # Translation tools
│   └── video_tools.py     # Video generation tools
├── prompts/                # MCP prompt templates
│   └── __init__.py
├── tests/                  # Test suite
├── .env.example           # Environment template
├── .gitignore
├── CHANGELOG.md
├── LICENSE
├── main.py                # Entry point
├── pyproject.toml         # Project configuration
└── README.md

API Reference

This server wraps the AceDataCloud Midjourney API:

Contributing

Contributions are welcome! Please:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing)
  5. Open a Pull Request

License

MIT License - see LICENSE for details.

Links


Made with love by AceDataCloud

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured