MCP Memory Service - TypeScript
A cloud-based vector memory service that provides AI assistants with persistent storage, semantic search, and entity management via the Model Context Protocol. It features multi-tenant isolation and bidirectional synchronization with macOS and Google contacts and calendars.
README
MCP Memory Service - TypeScript
A modern TypeScript implementation of a cloud-based vector memory service for AI assistants via the Model Context Protocol (MCP). This service provides persistent storage with semantic search capabilities for Claude.ai and other AI assistants.
Current Version: 1.7.2 | Status: Production-ready | Test Coverage: 95.2%
Features
- š§ 3-Tier Memory System: SYSTEM, LEARNED, and MEMORY layers for hierarchical knowledge organization
- š„ Multi-Tenant Support: Secure user isolation with Clerk OAuth authentication
- š Vector Search: Semantic similarity search using OpenAI embeddings
- š Automatic Embeddings: Auto-generates and updates embeddings on data changes
- š¢ Entity Management: Track people, organizations, projects, and relationships
- š Interaction History: Store and retrieve conversation history with context
- š± Contacts Sync: True bidirectional sync with macOS Contacts using LLM-based deduplication
- š Google Sync: Google Contacts and Calendar integration with incremental sync (v1.7.0+)
- š Calendar Tracking: Week-based Google Calendar event sync with attendee linking
- š Web Interface: Modern Next.js web UI for visual memory management (staging on port 3002)
- š MCP Protocol: JSON-RPC 2.0 over stdio (local) and HTTP (remote)
- š REST API: HTTP interface for web applications
- š OAuth Integration: Clerk authentication for remote access with 95.2% test coverage
- āļø Cloud-Ready: Built for modern cloud deployment with Turso database
- š Security Patches: Critical user isolation vulnerabilities fixed in v1.7.1
- š Smart Logging: LOG_LEVEL-aware logging with state tracking (v1.7.1+)
Architecture
src/
āāā types/ # TypeScript type definitions
āāā models/ # Data models and schemas
āāā database/ # Database connection and operations
āāā core/ # Core memory logic and vector search
āāā mcp/ # MCP server implementation
āāā api/ # REST API server
āāā cli/ # CLI tool
āāā utils/ # Utility functions
āāā index.ts # Main entry point
web/
āāā app/ # Next.js app directory
āāā components/ # React components
āāā lib/ # Utilities and integrations
āāā public/ # Static assets
Quick Start
Prerequisites
- Node.js 18+
- Turso database (or LibSQL compatible)
- OpenAI API key (for embeddings)
Installation
# Clone and install dependencies
npm install
# Copy environment configuration
cp .env.local .env
# Build the project
npm run build
# Start development server
npm run dev
Environment Variables
Required variables in .env:
# Database Configuration
TURSO_URL=libsql://your-database.turso.io
TURSO_AUTH_TOKEN=your-auth-token
# OpenAI Configuration (for vector embeddings)
OPENAI_API_KEY=your-openai-api-key
# Optional Configuration
LOG_LEVEL=info # Options: debug, info (default), warn, error (v1.7.1+)
MCP_DEBUG=0 # Set to 1 for detailed MCP protocol debugging
DEFAULT_USER_EMAIL=user@example.com
# Automatic Embedding Updates (v1.1.0+)
ENABLE_EMBEDDING_MONITOR=true # Enable background monitoring
EMBEDDING_MONITOR_INTERVAL=60000 # Check every 60 seconds
# Web Interface (v1.3.0+)
NEXT_PUBLIC_CLERK_PUBLISHABLE_KEY=your-clerk-publishable-key
CLERK_SECRET_KEY=your-clerk-secret-key
# Google Integration (v1.7.0+)
GOOGLE_CLIENT_ID=your-google-client-id
GOOGLE_CLIENT_SECRET=your-google-client-secret
GOOGLE_REDIRECT_URI=http://localhost:3002/api/auth/google/callback # Use port 3002 for staging
Usage
MCP Server (for Claude Desktop)
Recommended: Using CLI Tool
# Install globally
npm install -g mcp-memory-ts
# Initialize configuration
mcp-memory init
# Install to Claude Desktop
mcp-memory install
# Check status
mcp-memory status
This creates a config in ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"mcp-memory-ts": {
"command": "mcp-memory",
"args": ["server"],
"env": {
"TURSO_URL": "your-database-url",
"TURSO_AUTH_TOKEN": "your-auth-token",
"OPENAI_API_KEY": "your-openai-key",
"DEFAULT_USER_EMAIL": "user@example.com"
}
}
}
}
Manual Setup
For development or manual configuration:
# Start MCP server
npm run mcp-server
# Or with debug logging
MCP_DEBUG=1 npm run mcp-server
# Or using CLI command
mcp-memory server --debug
Remote MCP Server (HTTP with OAuth)
For web applications and remote access with Clerk authentication:
# Start remote MCP server
npm run mcp-server-remote
The remote MCP server will be available at http://localhost:3003 with:
- Authentication: Clerk OAuth session tokens
- Multi-Tenant: Complete user isolation by email
- Protocol: JSON-RPC 2.0 over HTTP
- Security: Rate limiting, CORS, session management
- Endpoints:
/mcp(main),/health - Test Coverage: 95.2% pass rate (20/21 tests)
OAuth Setup
-
Get Clerk credentials from dashboard.clerk.com
-
Configure environment:
# Development Keys CLERK_SECRET_KEY=your-clerk-test-secret-key NEXT_PUBLIC_CLERK_PUBLISHABLE_KEY=pk_test_bmF0aXZlLW1hcm1vc2V0LTc0LmNsZXJrLmFjY291bnRzLmRldiQ # Production Keys (when ready) CLERK_SECRET_KEY=your-clerk-live-secret-key NEXT_PUBLIC_CLERK_PUBLISHABLE_KEY=pk_live_Y2xlcmsuYWktbWVtb3J5LmFwcCQ -
Start server:
npm run mcp-server-remote -
Test with authentication:
curl -X POST http://localhost:3003/mcp \ -H "Authorization: Bearer YOUR_CLERK_TOKEN" \ -H "Content-Type: application/json" \ -d '{"jsonrpc":"2.0","id":1,"method":"initialize","params":{}}'
See docs/REMOTE_MCP_SETUP.md for detailed setup instructions.
Web Interface (v1.3.0+)
Modern Next.js web interface for visual memory management:
# Setup web interface
./scripts/setup-web.sh
# Start development server (port 3002 for staging)
./START_WEB_SERVER.sh
# Or manually
cd web
npm run dev -- -p 3002
# Production deployment with PM2
cd web && npm run build && cd ..
pm2 start ecosystem.config.cjs
The web interface will be available at:
- Staging:
http://localhost:3002(development/testing) - Production:
http://localhost:3001(via PM2)
Features:
- Authentication: Clerk OAuth for multi-user support
- Visual Search: Interactive memory browser with semantic search
- Entity Management: Visual relationship mapping
- Real-time Sync: Bidirectional sync with MCP server
- Contacts Integration: Import/export with LLM deduplication
- Google Integration: Contacts and Calendar sync with OAuth
See docs/features/WEB_INTERFACE.md for complete setup and deployment guide.
REST API Server
# Start REST API server
npm run api-server
The API will be available at http://localhost:3000 with endpoints for:
/api/memories- Memory management/api/entities- Entity management/api/search- Vector and text search/api/users- User management
Development
# Run tests
npm test
# Run tests with coverage
npm run test:coverage
# Lint code
npm run lint
# Format code
npm run format
# Type checking
npm run type-check
Testing
The project includes comprehensive test coverage:
- Unit Tests: Core functionality and utilities
- Integration Tests: OAuth authentication, user isolation, MCP protocol
- E2E Tests: Complete workflows and Claude Desktop integration
- Test Results: 95.2% pass rate (20/21 tests passing)
See docs/testing/QA_TEST_REPORT.md for detailed test results.
Documentation
Core Documentation
Guides
- Deployment Guide - Production deployment
- CLI Guide - Command-line interface
- Contacts Sync Guide - Bidirectional sync with macOS Contacts
- Contacts Sync Quick Start - Quick start for contacts sync
- Google Setup Guide - Google Cloud setup and OAuth configuration
- Google Contacts Sync Guide - Google Contacts sync with LLM deduplication
- Google Calendar Sync Guide - Google Calendar week-based sync
- Google Migration Guide - Migrate from macOS to Google sync
- Migration Guide - Schema migrations
Features
- Web Interface - Web UI setup and usage
- Google Sync - Google integration overview and features
- Contacts Sync Performance - Sync optimization
API Reference
- Google API Reference - REST API for Google sync
Security
- Clerk Implementation - Clerk setup guide
- Clerk Migration - Auth migration guide
- Security Fixes - v1.2.1 security patches
Deployment
- Deployment Comparison - Compare deployment options
Schema & Database
- Schema Optimization - Database design
- Schema Analysis - Database structure
Testing & Quality
- Verification Checklist - Deployment checklist
- Migration Tests - Migration test results
- QA Test Report - Quality assurance results
Additional Documentation
- docs/ - Complete documentation library
License
MIT License - See LICENSE file for details.
Testing
Comprehensive Integrity Tests
A comprehensive test suite is available to verify data integrity and system reliability:
# Run the full test suite
tsx comprehensive-integrity-test.ts
The test suite validates:
- Data integrity (type preservation, importance values, metadata)
- Boundary conditions (volume, special characters, concurrent operations)
- Recovery & reliability (updates, deletions, clear operations)
- Search algorithms (single-word, multi-word, case insensitivity)
- Production scenarios (session tracking, priority queues, date handling)
Expected results: 17/17 tests passed, 5/5 production criteria met
See docs/testing/ for detailed test results and analysis.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.