
mcp-meilisearch
mcp-meilisearch
README
MCP Meilisearch API Server
A comprehensive Model Context Protocol (MCP) server implementation that provides a bridge between AI models and the Meilisearch search engine using the StreamableHTTP transport. This project enables seamless integration of Meilisearch's powerful search capabilities within AI workflows.
Project Overview
This project implements an MCP (Model Context Protocol) server that provides AI models with direct access to Meilisearch's functionalities. The implementation follows a client-server architecture with these key components:
- MCP Server: Implements the Model Context Protocol to expose Meilisearch APIs as tools
- Web Client: Simple demo interface for testing the search functionality
- Command Line Client: Utility client for testing and development
Architecture
┌──────────────┐ ┌──────────────┐ ┌───────────────┐
│ Web Client │ │ MCP Server │ │ Meilisearch │
│ (Browser) │ <--> │ (Node.js) │ <-> │ Instance │
└──────────────┘ └──────────────┘ └───────────────┘
^ ^
│ │
┌──────────────┐ ┌───────────────┐
│ Command Line │ │ Document Data │
│ Client │ │ Sources │
└──────────────┘ └───────────────┘
Key Features
- StreamableHTTP Transport: Implements the StreamableHTTP transport for MCP, enabling real-time communication between clients and server
- Full Meilisearch API Support: Exposes all Meilisearch functionalities as MCP tools
- Category-based Organization: Tools are organized by functional categories
- Error Handling: Comprehensive error handling for API requests
- Web Client Demo: Simple web interface to demonstrate search capabilities
- Command Line Client: For testing and development
Available Tool Categories
The MCP server exposes Meilisearch APIs organized into these functional categories:
- System Tools: Health checks, version information, server stats
- Index Tools: Managing indexes (create, update, delete, list)
- Document Tools: Document operations (add, update, delete, retrieve)
- Search Tools: Advanced search capabilities including vector search
- Settings Tools: Configuration management for indexes
- Task Tools: Asynchronous task management
- Vector Tools: Vector search capabilities (experimental feature)
Getting Started
Prerequisites
- Node.js v20 or higher
- Meilisearch instance running locally or remotely
- API key for Meilisearch (if required by your Meilisearch configuration)
Setup
- Clone the repository
- Install dependencies:
npm install
- Create a
.env
file in the server directory with your Meilisearch configuration:
MEILISEARCH_HOST=http://localhost:7700
MEILISEARCH_API_KEY=your_master_key_here
MEILISEARCH_TIMEOUT=5000
Running the Server
Build and start the server:
npm run dev:cmd # For command line testing
# OR
npm run dev:web # For web interface testing
Accessing the Web Interface
Once running, the web demo is available at:
http://localhost:8000
Development
This project uses:
- TypeScript for type safety
- Lerna for workspace management
- Express for the web server
- Model Context Protocol SDK for AI integration
Project Structure
server/
: MCP server implementationsrc/tools/
: Implementation of Meilisearch API toolssrc/utils/
: Utility functions for API communication and error handlingsrc/server.ts
: StreamableHTTP MCP server implementation
client_web/
: Web demo clientclient_cmd/
: Command line client for testing
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.