MCP MariaDB Server

MCP MariaDB Server

Enables AI assistants to interact with MariaDB databases through standard SQL operations and advanced vector/embedding-based search. Supports database management, schema inspection, and semantic document storage and retrieval with multiple embedding providers.

Category
Visit Server

README

MCP MariaDB Server

The MCP MariaDB Server provides a Model Context Protocol (MCP) interface for managing and querying MariaDB databases, supporting both standard SQL operations and advanced vector/embedding-based search. Designed for use with AI assistants, it enables seamless integration of AI-driven data workflows with relational and vector databases.


Table of Contents


Overview

The MCP MariaDB Server exposes a set of tools for interacting with MariaDB databases and vector stores via a standardized protocol. It supports:

  • Listing databases and tables
  • Retrieving table schemas
  • Executing safe, read-only SQL queries
  • Creating and managing vector stores for embedding-based search
  • Integrating with embedding providers (currently OpenAI, Gemini, and HuggingFace) (optional)

Core Components

  • server.py: Main MCP server logic and tool definitions.
  • config.py: Loads configuration from environment and .env files.
  • embeddings.py: Handles embedding service integration (OpenAI).
  • tests/: Manual and automated test documentation and scripts.

Available Tools

Standard Database Tools

  • list_databases

    • Lists all accessible databases.
    • Parameters: None
  • list_tables

    • Lists all tables in a specified database.
    • Parameters: database_name (string, required)
  • get_table_schema

    • Retrieves schema for a table (columns, types, keys, etc.).
    • Parameters: database_name (string, required), table_name (string, required)
  • get_table_schema_with_relations

    • Retrieves schema with foreign key relations for a table.
    • Parameters: database_name (string, required), table_name (string, required)
  • execute_sql

    • Executes a read-only SQL query (SELECT, SHOW, DESCRIBE).
    • Parameters: sql_query (string, required), database_name (string, optional), parameters (list, optional)
    • Note: Enforces read-only mode if MCP_READ_ONLY is enabled.
  • create_database

    • Creates a new database if it doesn't exist.
    • Parameters: database_name (string, required)

Vector Store & Embedding Tools (optional)

Note: These tools are only available when EMBEDDING_PROVIDER is configured. If no embedding provider is set, these tools will be disabled.

  • create_vector_store

    • Creates a new vector store (table) for embeddings.
    • Parameters: database_name, vector_store_name, model_name (optional), distance_function (optional, default: cosine)
  • delete_vector_store

    • Deletes a vector store (table).
    • Parameters: database_name, vector_store_name
  • list_vector_stores

    • Lists all vector stores in a database.
    • Parameters: database_name
  • insert_docs_vector_store

    • Batch inserts documents (and optional metadata) into a vector store.
    • Parameters: database_name, vector_store_name, documents (list of strings), metadata (optional list of dicts)
  • search_vector_store

    • Performs semantic search for similar documents using embeddings.
    • Parameters: database_name, vector_store_name, user_query (string), k (optional, default: 7)

Embeddings & Vector Store

Overview

The MCP MariaDB Server provides optional embedding and vector store capabilities. These features can be enabled by configuring an embedding provider, or completely disabled if you only need standard database operations.

Supported Providers

  • OpenAI
  • Gemini
  • Open models from Huggingface

Configuration

  • EMBEDDING_PROVIDER: Set to openai, gemini, huggingface, or leave unset to disable
  • OPENAI_API_KEY: Required if using OpenAI embeddings
  • GEMINI_API_KEY: Required if using Gemini embeddings
  • HF_MODEL: Required if using HuggingFace embeddings (e.g., "intfloat/multilingual-e5-large-instruct" or "BAAI/bge-m3")

Model Selection

  • Default and allowed models are configurable in code (DEFAULT_OPENAI_MODEL, ALLOWED_OPENAI_MODELS)
  • Model can be selected per request or defaults to the configured model

Vector Store Schema

A vector store table has the following columns:

  • id: Auto-increment primary key
  • document: Text of the document
  • embedding: VECTOR type (indexed for similarity search)
  • metadata: JSON (optional metadata)

Configuration & Environment Variables

All configuration is via environment variables (typically set in a .env file):

Variable Description Required Default
DB_HOST MariaDB host address Yes localhost
DB_PORT MariaDB port No 3306
DB_USER MariaDB username Yes
DB_PASSWORD MariaDB password Yes
DB_NAME Default database (optional; can be set per query) No
MCP_READ_ONLY Enforce read-only SQL mode (true/false) No true
MCP_MAX_POOL_SIZE Max DB connection pool size No 10
EMBEDDING_PROVIDER Embedding provider (openai/gemini/huggingface) No None(Disabled)
OPENAI_API_KEY API key for OpenAI embeddings Yes (if EMBEDDING_PROVIDER=openai)
GEMINI_API_KEY API key for Gemini embeddings Yes (if EMBEDDING_PROVIDER=gemini)
HF_MODEL Open models from Huggingface Yes (if EMBEDDING_PROVIDER=huggingface)

Example .env file

With Embedding Support (OpenAI):

DB_HOST=localhost
DB_USER=your_db_user
DB_PASSWORD=your_db_password
DB_PORT=3306
DB_NAME=your_default_database

MCP_READ_ONLY=true
MCP_MAX_POOL_SIZE=10

EMBEDDING_PROVIDER=openai
OPENAI_API_KEY=sk-...
GEMINI_API_KEY=AI...
HF_MODEL="BAAI/bge-m3"

Without Embedding Support:

DB_HOST=localhost
DB_USER=your_db_user
DB_PASSWORD=your_db_password
DB_PORT=3306
DB_NAME=your_default_database
MCP_READ_ONLY=true
MCP_MAX_POOL_SIZE=10

Installation & Setup

Requirements

  • Python 3.11 (see .python-version)
  • uv (dependency manager; install instructions)
  • MariaDB server (local or remote)

Steps

  1. Clone the repository
  2. Install uv (if not already):
    pip install uv
    
  3. Install dependencies
    uv pip compile pyproject.toml -o uv.lock
    
    uv pip sync uv.lock
    
  4. Create .env in the project root (see Configuration)
  5. Run the server
    python server.py
    
    Adjust entry point if needed (e.g., main.py)

Usage Examples

Standard SQL Query

{
  "tool": "execute_sql",
  "parameters": {
    "database_name": "test_db",
    "sql_query": "SELECT * FROM users WHERE id = %s",
    "parameters": [123]
  }
}

Create Vector Store

{
  "tool": "create_vector_store",
  "parameters": {
    "database_name": "test_db",
    "vector_store_name": "my_vectors",
    "model_name": "text-embedding-3-small",
    "distance_function": "cosine"
  }
}

Insert Documents into Vector Store

{
  "tool": "insert_docs_vector_store",
  "parameters": {
    "database_name": "test_db",
    "vector_store_name": "my_vectors",
    "documents": ["Sample text 1", "Sample text 2"],
    "metadata": [{"source": "doc1"}, {"source": "doc2"}]
  }
}

Semantic Search

{
  "tool": "search_vector_store",
  "parameters": {
    "database_name": "test_db",
    "vector_store_name": "my_vectors",
    "user_query": "What is the capital of France?",
    "k": 5
  }
}

Integration - Claude desktop/Cursor/Windsurf/VSCode

{
  "mcpServers": {
    "MariaDB_Server": {
      "command": "uv",
      "args": [
        "--directory",
        "path/to/mariadb-mcp-server/",
        "run",
        "server.py"
        ],
        "envFile": "path/to/mcp-server-mariadb-vector/.env"      
    }
  }
}

or If already running MCP server

{
  "servers": {
    "mariadb-mcp-server": {
      "url": "http://{host}:9001/sse",
      "type": "sse"
    }
  }
}

Logging

  • Logs are written to logs/mcp_server.log by default.
  • Log messages include tool calls, configuration issues, embedding errors, and client requests.
  • Log level and output can be adjusted in the code (see config.py and logger setup).

Testing

  • Tests are located in the src/tests/ directory.
  • See src/tests/README.md for an overview.
  • Tests cover both standard SQL and vector/embedding tool operations.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured