MCP Logging Assistant
Provides comprehensive logging and monitoring capabilities for MCP services with real-time log tailing, advanced search, error analysis, and anomaly detection. Enables centralized log aggregation, correlation tracking, and health monitoring across all MCP ecosystem services.
README
MCP Logs Assistant
Centralized logging and monitoring for the MCP ecosystem.
Overview
The Logs Assistant provides comprehensive logging and aggregation capabilities for all MCP services with integrated analytics.
Features
- Log Collection: Aggregate logs from all services with in-memory indexing
- Real-time Tail: Follow logs in real-time
- Advanced Search: Query logs by service, level, time, correlation ID, or content
- Time Aggregation: Aggregate logs by minute, hour, or day with statistics
- Error Analysis: Analyze error patterns and trends across services
- Service Health: Monitor service health based on log metrics
- Anomaly Detection: Detect unusual patterns or spikes in log activity
- Correlation Tracking: Trace requests across services with correlation IDs
- Export: Export logs to JSON, CSV, or text formats
- Rotation & Cleanup: Automatic log rotation and retention management
Installation
npm install
Usage
As MCP Server (Claude Desktop)
Configure in Claude Desktop settings:
{
"mcpServers": {
"logs": {
"command": "node",
"args": ["/path/to/mcp-logs-assistant/index.js"]
}
}
}
As HTTP Service
npm start
The service will be available at http://localhost:9103
Available Tools
tail_logs
Follow logs in real-time from specified services.
await client.callTool({
name: 'tail_logs',
arguments: {
service: 'mcp-gateway-assistant', // optional: specific service
lines: 50 // number of recent lines to show
}
});
search_logs
Search through logs with advanced filtering.
await client.callTool({
name: 'search_logs',
arguments: {
query: 'error',
service: 'mcp-gateway-assistant', // optional
level: 'error', // optional: debug, info, warn, error
correlationId: 'req-123', // optional: trace specific request
startTime: '2024-01-01T00:00:00Z', // optional
endTime: '2024-01-02T00:00:00Z', // optional
limit: 100
}
});
get_log_stats
Get statistics about logs.
await client.callTool({
name: 'get_log_stats',
arguments: {
service: 'mcp-gateway-assistant', // optional
period: '1h' // 1h, 24h, 7d, 30d
}
});
rotate_logs
Manually trigger log rotation.
await client.callTool({
name: 'rotate_logs',
arguments: {
service: 'mcp-gateway-assistant' // optional: rotate specific service
}
});
get_errors
Get recent errors across services.
await client.callTool({
name: 'get_errors',
arguments: {
limit: 50,
include_stack: true
}
});
clear_logs
Clear old logs based on retention policy.
await client.callTool({
name: 'clear_logs',
arguments: {
older_than_days: 30,
dry_run: true // preview what would be deleted
}
});
Aggregation Tools
aggregate_logs
Aggregate logs by time period with statistics.
await client.callTool({
name: 'aggregate_logs',
arguments: {
period: 'hour', // minute, hour, day
startTime: '2024-01-01T00:00:00Z',
endTime: '2024-01-02T00:00:00Z',
service: 'mcp-gateway-assistant' // optional
}
});
analyze_errors
Analyze error patterns and trends.
await client.callTool({
name: 'analyze_errors',
arguments: {
service: 'mcp-gateway-assistant', // optional
timeRange: 86400000, // 24 hours in ms
minOccurrences: 2 // minimum occurrences to report
}
});
get_log_statistics
Get comprehensive log statistics.
await client.callTool({
name: 'get_log_statistics',
arguments: {
service: 'mcp-gateway-assistant' // optional
}
});
find_correlated_logs
Find all logs with a specific correlation ID.
await client.callTool({
name: 'find_correlated_logs',
arguments: {
correlationId: 'req-123-abc'
}
});
export_logs
Export filtered logs to file.
await client.callTool({
name: 'export_logs',
arguments: {
format: 'json', // json, csv, text
query: 'error',
service: 'mcp-gateway-assistant',
level: 'error',
startTime: '2024-01-01T00:00:00Z',
endTime: '2024-01-02T00:00:00Z',
limit: 1000
}
});
get_service_health
Analyze service health based on logs.
await client.callTool({
name: 'get_service_health',
arguments: {
service: 'mcp-gateway-assistant',
timeRange: 3600000 // 1 hour in ms
}
});
detect_anomalies
Detect anomalies in log patterns.
await client.callTool({
name: 'detect_anomalies',
arguments: {
service: 'mcp-gateway-assistant', // optional
sensitivity: 5 // 1-10, higher = more sensitive
}
});
cleanup_old_logs
Clean up logs older than retention period.
await client.callTool({
name: 'cleanup_old_logs',
arguments: {
dryRun: true // preview without deleting
}
});
Configuration
Aggregator Options
const aggregator = new LogAggregator({
logsDir: '/path/to/logs',
aggregateDir: '/path/to/aggregated',
maxMemoryLogs: 10000, // Max logs to keep in memory
indexInterval: 60000, // Re-index every minute
retentionDays: 30 // Keep logs for 30 days
});
Environment Variables
LOG_DIR=~/Documents/mcp-assistant/logs
RETENTION_DAYS=30
INDEX_INTERVAL=60000
MAX_MEMORY_LOGS=10000
Log Format
All services should use structured logging:
{
"timestamp": "2024-01-01T12:00:00Z",
"level": "info",
"service": "mcp-gateway-assistant",
"message": "Request processed",
"metadata": {
"requestId": "abc123",
"duration": 45,
"statusCode": 200
}
}
Data Storage
- Service logs:
~/Documents/mcp-assistant/logs/[service-name]/ - Aggregated data:
~/Documents/mcp-assistant/data/logs-assistant/aggregated/ - Exported logs:
~/Documents/mcp-assistant/data/logs-assistant/aggregated/export-*.{json,csv,text} - In-memory indices: Service, Correlation ID, Error Type
Development
# Run tests
npm test
# Development mode
npm run dev
# CLI usage
npm run tail -- --service gateway
npm run search -- --query "error" --level error
npm run stats -- --period 24h
Performance Features
Indexing
- Builds indices on startup for fast queries
- Updates indices incrementally every minute
- Maintains separate indices for services, correlations, and errors
- Limits in-memory cache to prevent memory issues
Query Optimization
- Uses indexed lookups for common queries
- Supports time-range filtering
- Implements result pagination
- Caches frequently accessed data
Use Cases
Troubleshooting Service Issues
// Find all errors for a service
const errors = await analyze_errors({
service: 'mcp-gateway-assistant',
timeRange: 3600000 // last hour
});
// Check service health
const health = await get_service_health({
service: 'mcp-gateway-assistant'
});
Request Tracing
// Trace a request across services
const trace = await find_correlated_logs({
correlationId: 'req-123'
});
Performance Monitoring
// Get hourly aggregations
const metrics = await aggregate_logs({
period: 'hour',
startTime: '2024-01-01T00:00:00Z'
});
// Detect anomalies
const anomalies = await detect_anomalies({
sensitivity: 5
});
Troubleshooting
Slow Queries
- Reduce time range
- Add more specific filters
- Increase cache size if memory allows
Missing Logs
- Check if logs are in expected format
- Verify log directory paths
- Ensure services are writing logs correctly
High Memory Usage
- Reduce maxMemoryLogs setting
- Implement more aggressive retention policies
- Use export and cleanup features regularly
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.