MCP Log Analyzer
A Model Context Protocol server that analyzes various log types on Windows systems, allowing users to register, query, and analyze logs from different sources including Windows Event Logs, ETL files, and structured/unstructured text logs.
README
MCP Log Analyzer
A Model Context Protocol (MCP) server for analyzing different types of logs on Windows systems, built with the FastMCP framework.
Features
-
Multiple Log Format Support
- Windows Event Logs (EVT/EVTX)
- Windows Event Trace Logs (ETL)
- Structured Logs (JSON, XML)
- CSV Logs
- Unstructured Text Logs
-
MCP Tools
register_log_source: Register new log sourceslist_log_sources: View all registered sourcesget_log_source: Get details about a specific sourcedelete_log_source: Remove a log sourcequery_logs: Query logs with filters and paginationanalyze_logs: Perform analysis (summary, pattern, anomaly)
-
MCP Resources
logs://sources: View registered log sourceslogs://types: Learn about supported log typeslogs://analysis-types: Understand analysis optionssystem://windows-event-logs: Recent Windows System and Application event logssystem://linux-logs: Linux systemd journal and application logssystem://process-list: Current processes with PID, CPU, and memory usagesystem://netstat: Network connections and statistics for troubleshooting
-
MCP Prompts
- Log analysis quickstart guide
- Troubleshooting guide
- Windows Event Log specific guide
Installation
# Clone the repository
git clone https://github.com/your-username/mcp-log-analyzer.git
cd mcp-log-analyzer
# Install the package
pip install -e .
# For ETL file support (optional)
pip install -e ".[etl]"
# For development dependencies
pip install -e ".[dev]"
Windows Setup
On Windows, the package includes Windows Event Log support via pywin32. If you encounter import errors:
# Ensure Windows dependencies are installed
pip install pywin32>=300
# Test the setup
python test_windows_setup.py
# If successful, start the server
python main.py
Note: On first install of pywin32, you may need to run the post-install script:
python Scripts/pywin32_postinstall.py -install
Usage
Understanding MCP Servers
MCP (Model Context Protocol) servers don't have traditional web endpoints. They communicate via stdin/stdout with MCP clients (like Claude Code). When you run python main.py, the server starts silently and waits for MCP protocol messages.
Testing the Server
# Test that the server is working
python check_server.py
# See usage instructions
python check_server.py --usage
Starting the MCP Server
# Run directly
python main.py
# Or use Claude Code's MCP integration
claude mcp add mcp-log-analyzer python main.py
Using with Claude Code
-
Add the server to Claude Code:
claude mcp add mcp-log-analyzer python /path/to/main.py -
Use the tools in Claude Code:
- Register a log source: Use the
register_log_sourcetool - Query logs: Use the
query_logstool - Analyze logs: Use the
analyze_logstool
- Register a log source: Use the
-
Access resources:
- Reference resources using
@mcp-log-analyzer:logs://sources - Get help with prompts like
/mcp__mcp-log-analyzer__log_analysis_quickstart
- Reference resources using
System Monitoring Resources
These resources provide real-time system information without needing to register log sources:
-
Check System Processes:
- Access via
@mcp-log-analyzer:system://process-list - Shows top processes by CPU usage with memory information
- Access via
-
Windows Event Logs (Windows only):
- Default:
@mcp-log-analyzer:system://windows-event-logs(last 10 entries) - By count:
@mcp-log-analyzer:system://windows-event-logs/last/50(last 50 entries) - By time:
@mcp-log-analyzer:system://windows-event-logs/time/30m(last 30 minutes) - By range:
@mcp-log-analyzer:system://windows-event-logs/range/2025-01-07 13:00/2025-01-07 14:00 - Shows System and Application event log entries
- Default:
-
Linux System Logs (Linux only):
- Default:
@mcp-log-analyzer:system://linux-logs(last 50 lines) - By count:
@mcp-log-analyzer:system://linux-logs/last/100(last 100 lines) - By time:
@mcp-log-analyzer:system://linux-logs/time/1h(last hour) - By range:
@mcp-log-analyzer:system://linux-logs/range/2025-01-07 13:00/2025-01-07 14:00 - Shows systemd journal, syslog, and common application logs
- Default:
-
Network Monitoring (Cross-platform):
- Default:
@mcp-log-analyzer:system://netstat(listening ports) - Listening ports:
@mcp-log-analyzer:system://netstat/listening - Established connections:
@mcp-log-analyzer:system://netstat/established - All connections:
@mcp-log-analyzer:system://netstat/all - Network statistics:
@mcp-log-analyzer:system://netstat/stats - Routing table:
@mcp-log-analyzer:system://netstat/routing - Port-specific:
@mcp-log-analyzer:system://netstat/port/80 - Uses netstat on Windows, ss (preferred) or netstat on Linux
- Default:
Time Format Examples:
- Relative time:
30m(30 minutes),2h(2 hours),1d(1 day) - Absolute time:
2025-01-07 13:00,2025-01-07 13:30:15,07/01/2025 13:00
Example Workflow
-
Register a Windows System Log:
Use register_log_source tool with: - name: "system-logs" - source_type: "evt" - path: "System" -
Query Recent Errors:
Use query_logs tool with: - source_name: "system-logs" - filters: {"level": "Error"} - limit: 10 -
Analyze Patterns:
Use analyze_logs tool with: - source_name: "system-logs" - analysis_type: "pattern" -
Register an ETL File:
Use register_log_source tool with: - name: "network-trace" - source_type: "etl" - path: "C:\\Traces\\network.etl"
Development
# Run tests
pytest
# Code formatting
black .
isort .
# Type checking
mypy src
# Run all quality checks
black . && isort . && mypy src && flake8
Project Structure
src/mcp_log_analyzer/: Main packagemcp_server/: MCP server implementation using FastMCPcore/: Core functionality and modelsparsers/: Log parsers for different formats
main.py: Server entry point.mcp.json: MCP configurationtests/: Test files
Requirements
- Python 3.12+
- Windows OS (for Event Log support)
- See
pyproject.tomlfor full dependencies
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
E2B
Using MCP to run code via e2b.
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Neon Database
MCP server for interacting with Neon Management API and databases