MCP LLM Integration Server
Enables integration of local LLM capabilities with MCP-compatible clients like Claude Desktop, Continue.dev, and Cline. Provides tools for processing text prompts through local language models using a customizable inference function.
README
MCP LLM Integration Server
This is a Model Context Protocol (MCP) server that allows you to integrate local LLM capabilities with MCP-compatible clients.
Features
- llm_predict: Process text prompts through a local LLM
- echo: Echo back text for testing purposes
Setup
-
Install dependencies:
source .venv/bin/activate uv pip install mcp -
Test the server:
python -c " import asyncio from main import server, list_tools, call_tool async def test(): tools = await list_tools() print(f'Available tools: {[t.name for t in tools]}') result = await call_tool('echo', {'text': 'Hello!'}) print(f'Result: {result[0].text}') asyncio.run(test()) "
Integration with LLM Clients
For Claude Desktop
Add this to your Claude Desktop configuration (~/.config/claude-desktop/claude_desktop_config.json):
{
"mcpServers": {
"llm-integration": {
"command": "/home/tandoori/Desktop/dev/mcp-server/.venv/bin/python",
"args": ["/home/tandoori/Desktop/dev/mcp-server/main.py"]
}
}
}
For Continue.dev
Add this to your Continue configuration (~/.continue/config.json):
{
"mcpServers": [
{
"name": "llm-integration",
"command": "/home/tandoori/Desktop/dev/mcp-server/.venv/bin/python",
"args": ["/home/tandoori/Desktop/dev/mcp-server/main.py"]
}
]
}
For Cline
Add this to your Cline MCP settings:
{
"llm-integration": {
"command": "/home/tandoori/Desktop/dev/mcp-server/.venv/bin/python",
"args": ["/home/tandoori/Desktop/dev/mcp-server/main.py"]
}
}
Customizing the LLM Integration
To integrate your own local LLM, modify the perform_llm_inference function in main.py:
async def perform_llm_inference(prompt: str, max_tokens: int = 100) -> str:
Example: Using transformers
from transformers import pipeline
generator = pipeline('text-generation', model='your-model')
result = generator(prompt, max_length=max_tokens)
return result[0]['generated_text']
Example: Using llama.cpp python bindings
from llama_cpp import Llama
llm = Llama(model_path="path/to/your/model.gguf")
output = llm(prompt, max_tokens=max_tokens)
return output['choices'][0]['text']
Current placeholder implementation
return f"Processed prompt: '{prompt}' (max_tokens: {max_tokens})"
Testing
Run the server directly to test JSON-RPC communication:
source .venv/bin/activate
python main.py
Then send JSON-RPC requests via stdin:
{"jsonrpc": "2.0", "id": 1, "method": "initialize", "params": {"protocolVersion": "2024-11-05", "capabilities": {}, "clientInfo": {"name": "test-client", "version": "1.0.0"}}}
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.