MCP JSONDiff Kel
An efficient MCP server for performing accurate, deep comparisons between JSON objects or strings using the deepdiff engine. It provides AI agents with standardized difference reports, supporting nested structures and various input formats to ensure precise data analysis.
README
MCP JSONDiff Kel
基于 Model Context Protocol (MCP) 的高效JSON对比工具,专为AI对话场景设计。
📋 项目简介
在AI辅助开发过程中,JSON对比常常遇到以下问题:
- 准确性不足: 传统AI对比方法可能存在误判
- 理解偏差: AI可能误解需求,生成对比代码而非直接对比结果
- 输出冗长: 对比结果过于详细,难以快速获取关键信息
本项目通过MCP协议提供标准化的JSON对比服务,确保AI能够准确、快速地完成JSON对比任务。
🛠️ 部署指南
使用 uvx(推荐)
uvx mcp-jsondiff-kel@latest
使用 pip
pip install mcp-jsondiff-kel
从源码安装
git clone https://github.com/your-username/mcp-jsondiff.git
cd mcp-jsondiff
pip install -e .
应用配置
Claude Desktop 配置
在应用配置文件中添加以下配置:
{
"mcpServers": {
"mcp_jsondiff": {
"command": "uvx",
"args": [
"mcp-jsondiff-kel@latest"
]
}
}
}
Cherry Studio 配置
{
"mcpServers": {
"mcp_jsondiff": {
"command": "uvx",
"args": [
"mcp-jsondiff-kel@latest"
]
}
}
}
📖 使用示例
演示示例用 Cherry Studio进行演示
首先在对话框中选择此 mcp 工具
然后输入形如如下的文案即可进行对比 json对比,预期值:{"a":1,"b":2}, 实际值:{"a":1,"b":2}
字符串对比

json 对比

转义后的 json 对比

嵌套 json 对比

演示视频
https://www.bilibili.com/video/BV1yYh2zNEcY/?spm_id_from=333.1387.homepage.video_card.click&vd_source=1a77b8b856c66190a0ab82a7acb92136
🚀 项目特性
- 🔍 智能对比: 基于
deepdiff库的深度JSON差异检测 - ⚡ 快速响应: 优化的对比算法,支持大型JSON文档
- 🔄 灵活输入: 支持JSON字符串和字典对象两种输入格式
- 📊 清晰输出: 结构化的差异报告,快速定位问题
- 🔧 MCP集成: 无缝集成到支持MCP协议的AI应用中
- 🐍 Python原生: 基于Python 3.13+,性能优异
🔧 API 文档
核心工具:jsonDiff
功能: 对比两个JSON对象或字符串,返回详细的差异信息
参数:
expectKey(Union[str, dict]): 期望的JSON值,支持JSON字符串或字典对象actualKey(Union[str, dict]): 实际的JSON值,支持JSON字符串或字典对象
返回值:
{
"differences": "DeepDiff对象,包含所有差异信息",
"is_identical": "布尔值,表示两个JSON是否完全一致",
"message": "字符串,描述对比结果或错误信息"
}
特性:
- 自动忽略数组顺序差异 (
ignore_order=True) - 支持嵌套JSON结构对比
- 智能错误处理,提供清晰的错误信息
🧪 调试与测试
使用MCP检查器调试
npx @modelcontextprotocol/inspector uvx mcp-jsondiff-kel
本地运行测试
cd src/mcp_jsondiff_kel
python server.py
🏗️ 项目结构
mcp-jsondiff/
├── pyproject.toml # 项目配置和依赖
├── README.md # 项目文档
├── src/
│ └── mcp_jsondiff_kel/
│ ├── __init__.py # 包入口点
│ ├── __main__.py # 命令行入口
│ └── server.py # MCP服务器核心逻辑
└── uv.lock # 依赖锁定文件
🔧 技术栈
- Python 3.13+: 核心运行时
- FastMCP: MCP协议实现框架
- DeepDiff: JSON差异检测引擎
- Hatchling: 构建系统
🤝 贡献指南
我们欢迎社区贡献!请遵循以下步骤:
- Fork 本仓库
- 创建特性分支 (
git checkout -b feature/AmazingFeature) - 提交更改 (
git commit -m 'Add some AmazingFeature') - 推送到分支 (
git push origin feature/AmazingFeature) - 开启 Pull Request
开发环境设置
# 克隆仓库
git clone https://github.com/your-username/mcp-jsondiff.git
cd mcp-jsondiff
# 安装开发依赖
pip install -e ".[dev]"
# 运行测试
python -m pytest
📝 更新日志
v0.1.5
- 初始版本发布
- 支持基础JSON对比功能
- MCP协议集成
- 错误处理和用户友好的输出格式
📄 许可证
本项目采用 MIT 许可证 - 查看 LICENSE 文件了解详情。
👥 作者
- yohan - 2220041897@qq.com
🙏 致谢
- Model Context Protocol - 提供MCP协议标准
- DeepDiff - 强大的差异检测库
- FastMCP - 高效的MCP实现框架
📞 支持与反馈
如果您在使用过程中遇到问题或有改进建议,请:
- 在 GitHub Issues 中提交问题
- 发送邮件至 2220041897@qq.com
- 参与社区讨论
⭐ 如果这个项目对您有帮助,请给我们一个星标!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.