MCP Jina Supabase RAG

MCP Jina Supabase RAG

Crawls and indexes documentation websites to Supabase with vector embeddings for RAG, using smart sitemap discovery and Jina AI for fast content extraction with multi-project support.

Category
Visit Server

README

MCP Jina Supabase RAG

A lean, focused MCP server for crawling documentation websites and indexing them to Supabase for RAG (Retrieval-Augmented Generation).

Features

  • Smart URL Discovery: Tries sitemap.xml first, falls back to Crawl4AI recursive discovery
  • Hybrid Content Extraction: Uses Jina AI for fast content extraction, Crawl4AI as fallback
  • Multi-Project Support: Index multiple documentation sites to separate Supabase projects
  • Efficient Chunking: Intelligent text chunking with configurable size and overlap
  • Vector Embeddings: OpenAI embeddings stored in Supabase pgvector

Architecture

┌─────────────────────────────────────────────────────────────┐
│                    MCP Server Tools                         │
├─────────────────────────────────────────────────────────────┤
│  1. crawl_and_index(url_pattern, project_name)             │
│  2. list_projects()                                         │
│  3. search_documents(query, project_name, limit)           │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│                   Discovery Layer                           │
├─────────────────────────────────────────────────────────────┤
│  • Try sitemap.xml (fast)                                   │
│  • Try common doc patterns                                  │
│  • Crawl4AI recursive discovery (fallback)                  │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│                  Extraction Layer                           │
├─────────────────────────────────────────────────────────────┤
│  • Jina AI Reader API (primary, fast)                       │
│  • Crawl4AI (fallback for complex pages)                    │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│              Chunking & Embedding Layer                     │
├─────────────────────────────────────────────────────────────┤
│  • Smart text chunking                                      │
│  • OpenAI embeddings (text-embedding-3-small)               │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│                   Supabase Storage                          │
├─────────────────────────────────────────────────────────────┤
│  • pgvector for similarity search                           │
│  • Project isolation via source column                      │
└─────────────────────────────────────────────────────────────┘

Installation

Prerequisites

Setup

  1. Clone the repository:
git clone https://github.com/yourusername/mcp-jina-supabase-rag.git
cd mcp-jina-supabase-rag
  1. Install dependencies:
# Using uv (recommended)
uv venv
source .venv/bin/activate  # or .venv\Scripts\activate on Windows
uv pip install -e .

# Or using pip
pip install -e .
  1. Set up Supabase database:
# Run the SQL in supabase_schema.sql in your Supabase SQL Editor
  1. Configure environment:
cp .env.example .env
# Edit .env with your credentials

Usage

Running the MCP Server

# SSE transport (recommended for remote connections)
python src/main.py

# The server will start on http://localhost:8052/sse

Configure MCP Client

Claude Code

claude mcp add --transport sse jina-supabase http://localhost:8052/sse

Cursor / Claude Desktop

{
  "mcpServers": {
    "jina-supabase": {
      "transport": "sse",
      "url": "http://localhost:8052/sse"
    }
  }
}

Slash Command

Create /home/marty/.claude/commands/jina.md:

---
allowed-tools: mcp__jina-supabase
argument-hint: <url_pattern> <project_name>
description: Crawl documentation and index to Supabase RAG
---

# Index Documentation to Supabase

Use the jina-supabase MCP server to crawl and index documentation.

Arguments:
- $1: URL pattern (e.g., https://docs.example.com/*)
- $2: Project name for isolation

Example:
/jina https://docs.anthropic.com/claude/* anthropic-docs

Tools

crawl_and_index

Crawl a documentation site and index to Supabase.

Parameters:

  • url_pattern (string): URL or pattern to crawl
  • project_name (string): Project identifier for isolation
  • discovery_method (string, optional): auto, sitemap, or crawl
  • extraction_method (string, optional): auto, jina, or crawl4ai

Example:

await crawl_and_index(
    url_pattern="https://docs.supabase.com/docs/*",
    project_name="supabase-docs",
    discovery_method="auto",
    extraction_method="jina"
)

list_projects

List all indexed projects.

Returns: List of project names with document counts

search_documents

Search indexed documents using vector similarity.

Parameters:

  • query (string): Search query
  • project_name (string, optional): Filter by project
  • limit (int, optional): Max results (default: 5)

Example:

results = await search_documents(
    query="How do I set up authentication?",
    project_name="supabase-docs",
    limit=10
)

Configuration

See .env.example for all configuration options.

Discovery Methods

  • auto: Try sitemap first, fallback to crawl
  • sitemap: Only use sitemap.xml (fast, fails if no sitemap)
  • crawl: Only use Crawl4AI recursive discovery (slow, comprehensive)

Extraction Methods

  • auto: Use Jina for bulk extraction (>10 URLs), Crawl4AI otherwise
  • jina: Use Jina AI Reader API (fast, requires API key)
  • crawl4ai: Use Crawl4AI browser automation (slow, no API key needed)

Development

# Install dev dependencies
uv pip install -e ".[dev]"

# Run tests
pytest

# Format code
black src/

# Lint
ruff check src/

Differences from mcp-crawl4ai-rag

Feature mcp-crawl4ai-rag mcp-jina-supabase-rag
Focus Full-featured RAG with knowledge graphs Lean documentation indexer
Discovery Recursive only Sitemap first, crawl fallback
Extraction Crawl4AI only Jina primary, Crawl4AI fallback
Dependencies Heavy (Neo4j, etc.) Light (core only)
Use Case Advanced RAG with hallucination detection Fast doc indexing

License

MIT

Contributing

Contributions welcome! Please open an issue first to discuss changes.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured