MCP Jina Supabase RAG
Crawls and indexes documentation websites to Supabase with vector embeddings for RAG, using smart sitemap discovery and Jina AI for fast content extraction with multi-project support.
README
MCP Jina Supabase RAG
A lean, focused MCP server for crawling documentation websites and indexing them to Supabase for RAG (Retrieval-Augmented Generation).
Features
- Smart URL Discovery: Tries sitemap.xml first, falls back to Crawl4AI recursive discovery
- Hybrid Content Extraction: Uses Jina AI for fast content extraction, Crawl4AI as fallback
- Multi-Project Support: Index multiple documentation sites to separate Supabase projects
- Efficient Chunking: Intelligent text chunking with configurable size and overlap
- Vector Embeddings: OpenAI embeddings stored in Supabase pgvector
Architecture
┌─────────────────────────────────────────────────────────────┐
│ MCP Server Tools │
├─────────────────────────────────────────────────────────────┤
│ 1. crawl_and_index(url_pattern, project_name) │
│ 2. list_projects() │
│ 3. search_documents(query, project_name, limit) │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ Discovery Layer │
├─────────────────────────────────────────────────────────────┤
│ • Try sitemap.xml (fast) │
│ • Try common doc patterns │
│ • Crawl4AI recursive discovery (fallback) │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ Extraction Layer │
├─────────────────────────────────────────────────────────────┤
│ • Jina AI Reader API (primary, fast) │
│ • Crawl4AI (fallback for complex pages) │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ Chunking & Embedding Layer │
├─────────────────────────────────────────────────────────────┤
│ • Smart text chunking │
│ • OpenAI embeddings (text-embedding-3-small) │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ Supabase Storage │
├─────────────────────────────────────────────────────────────┤
│ • pgvector for similarity search │
│ • Project isolation via source column │
└─────────────────────────────────────────────────────────────┘
Installation
Prerequisites
- Python 3.12+
- Supabase account
- OpenAI API key
- Jina AI API key (optional, recommended)
Setup
- Clone the repository:
git clone https://github.com/yourusername/mcp-jina-supabase-rag.git
cd mcp-jina-supabase-rag
- Install dependencies:
# Using uv (recommended)
uv venv
source .venv/bin/activate # or .venv\Scripts\activate on Windows
uv pip install -e .
# Or using pip
pip install -e .
- Set up Supabase database:
# Run the SQL in supabase_schema.sql in your Supabase SQL Editor
- Configure environment:
cp .env.example .env
# Edit .env with your credentials
Usage
Running the MCP Server
# SSE transport (recommended for remote connections)
python src/main.py
# The server will start on http://localhost:8052/sse
Configure MCP Client
Claude Code
claude mcp add --transport sse jina-supabase http://localhost:8052/sse
Cursor / Claude Desktop
{
"mcpServers": {
"jina-supabase": {
"transport": "sse",
"url": "http://localhost:8052/sse"
}
}
}
Slash Command
Create /home/marty/.claude/commands/jina.md:
---
allowed-tools: mcp__jina-supabase
argument-hint: <url_pattern> <project_name>
description: Crawl documentation and index to Supabase RAG
---
# Index Documentation to Supabase
Use the jina-supabase MCP server to crawl and index documentation.
Arguments:
- $1: URL pattern (e.g., https://docs.example.com/*)
- $2: Project name for isolation
Example:
/jina https://docs.anthropic.com/claude/* anthropic-docs
Tools
crawl_and_index
Crawl a documentation site and index to Supabase.
Parameters:
url_pattern(string): URL or pattern to crawlproject_name(string): Project identifier for isolationdiscovery_method(string, optional):auto,sitemap, orcrawlextraction_method(string, optional):auto,jina, orcrawl4ai
Example:
await crawl_and_index(
url_pattern="https://docs.supabase.com/docs/*",
project_name="supabase-docs",
discovery_method="auto",
extraction_method="jina"
)
list_projects
List all indexed projects.
Returns: List of project names with document counts
search_documents
Search indexed documents using vector similarity.
Parameters:
query(string): Search queryproject_name(string, optional): Filter by projectlimit(int, optional): Max results (default: 5)
Example:
results = await search_documents(
query="How do I set up authentication?",
project_name="supabase-docs",
limit=10
)
Configuration
See .env.example for all configuration options.
Discovery Methods
auto: Try sitemap first, fallback to crawlsitemap: Only use sitemap.xml (fast, fails if no sitemap)crawl: Only use Crawl4AI recursive discovery (slow, comprehensive)
Extraction Methods
auto: Use Jina for bulk extraction (>10 URLs), Crawl4AI otherwisejina: Use Jina AI Reader API (fast, requires API key)crawl4ai: Use Crawl4AI browser automation (slow, no API key needed)
Development
# Install dev dependencies
uv pip install -e ".[dev]"
# Run tests
pytest
# Format code
black src/
# Lint
ruff check src/
Differences from mcp-crawl4ai-rag
| Feature | mcp-crawl4ai-rag | mcp-jina-supabase-rag |
|---|---|---|
| Focus | Full-featured RAG with knowledge graphs | Lean documentation indexer |
| Discovery | Recursive only | Sitemap first, crawl fallback |
| Extraction | Crawl4AI only | Jina primary, Crawl4AI fallback |
| Dependencies | Heavy (Neo4j, etc.) | Light (core only) |
| Use Case | Advanced RAG with hallucination detection | Fast doc indexing |
License
MIT
Contributing
Contributions welcome! Please open an issue first to discuss changes.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
E2B
Using MCP to run code via e2b.
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Neon Database
MCP server for interacting with Neon Management API and databases