MCP Jieba Server
Provides high-performance Chinese text segmentation, POS tagging, and keyword extraction using Rust-based Jieba implementation. Supports both local STDIO and remote HTTP deployment modes.
README
MCP Jieba Server
这是一个基于 rjieba (Rust implementation of Jieba) 的 Model Context Protocol (MCP) 服务器,提供高性能的中文分词服务。
功能特性
- 高性能分词: 使用 Rust 编写的底层引擎。
- 多模式支持: 支持精确模式 (
exact) 和搜索引擎模式 (search)。 - 词性标注: 支持 ICTCLAS 兼容的词性标注。
- 关键词提取: 基于 BM25 算法的关键词提取。
- 批量处理: 支持单字符串或字符串数组输入,返回 JSON 格式结果。
- 双模部署:
- STDIO: 适用于本地开发和 Claude Context/Cherry Studio/VS Code 集成。
- Streamable-HTTP: 适用于远程部署(如 ModelScope)。
安装
使用 pip / uv / pipx
# 使用 pip
pip install .
# 使用 uv
uv pip install .
使用方法
1. 本地运行 (STDIO)
直接运行模块即可启动 STDIO 服务器:
python -m mcp_jieba.server
或者在 Claude Context/Cherry Studio/VS Code 的 MCP 配置中添加:
{
"mcpServers": {
"jieba": {
"command": "python",
"args": ["-m", "mcp_jieba.server"]
}
}
}
2. 远程部署 (Streamable-HTTP)
使用命令行参数启动 HTTP 服务器:
python -m mcp_jieba.server --transport http --host 0.0.0.0 --port 8000
SSE 端点地址: http://localhost:8000/sse
ModelScope 部署
在 ModelScope 创建 Space 时,选择 Python 环境,并使用以下启动命令:
python -m mcp_jieba.server --transport http --host 0.0.0.0 --port 8000
当前 pyproject.toml 已经包含所有依赖。
开发与测试
目前项目的单元测试尚不完善。建议使用 MCP Inspector 进行交互式测试和调试。
bunx @modelcontextprotocol/inspector python -m mcp_jieba.server
工具说明
tokenize
对文本进行分词。
| 项目 | 描述 |
|---|---|
| 参数 | <ul><li>text (required): 待分词的文本,可以是单个字符串或字符串数组。</li><li>mode (optional): 分词模式,可选 "exact" (默认) 或 "search"。</li></ul> |
| 返回 | JSON 对象,键为输入数组的索引(字符串格式),值为分词结果数组。 |
示例:
- 输入:
text=["我爱北京天安门"], mode="exact" - 输出:
{"0": ["我", "爱", "北京", "天安门"]}
tag
对文本进行词性标注,标注类型符合ICTCLAS标准。
| 项目 | 描述 |
|---|---|
| 参数 | <ul><li>text (required): 待标注的文本,可以是单个字符串或字符串数组。</li></ul> |
| 返回 | JSON 对象,键为输入数组的索引,值为单词-词性对的列表。 |
示例:
- 输入:
text=["我爱北京天安门"] - 输出:
{"0": [{"word": "我", "flag": "r"}, {"word": "爱", "flag": "v"}, ...]}
extract_keywords
使用向量化的针对关键词BM25-ADPT算法提取关键词。
| 项目 | 描述 |
|---|---|
| 参数 | <ul><li>text (required): 待提取的文本,可以是单个字符串或字符串数组。</li><li>top_k (optional): 每个文档提取的关键词数量 (默认 3)。</li></ul> |
| 返回 | JSON 对象,键为输入数组的索引,值为关键词列表。 |
示例:
- 输入:
text=["我爱北京天安门"], top_k=2 - 输出:
{"0": ["天安门", "北京"]}
鸣谢
- @messense/jieba-rs
- @messense/rjieba-py
- BM25-ADPT https://doi.org/10.1145/2063576.2063871
- GitHub Copilot
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.