MCP Integration Proxy

MCP Integration Proxy

Routes requests to multiple downstream Model Context Protocol servers and provides a LangGraph.js-based agent with RAG capabilities for development assistance.

Category
Visit Server

README

MCP Integration Challenge: Proxy & RAG Foundations

AI Protocol Engineer Challenge: Week 1

This repository contains the complete implementation for the MCP Integration, Proxy & RAG Foundations challenge using TypeScript/NodeJS with LangGraph.js.

Project Overview

This project implements a comprehensive MCP (Model Context Protocol) ecosystem including:

  • MCP Proxy Server: Routes requests to multiple downstream MCP servers
  • Dev Assistant Agent: LangGraph.js-based agent with RAG capabilities
  • Mock Knowledge Base: Sample data for testing RAG functionality
  • MCP Client Tester: Testing tools for MCP server interactions
  • IDE Integration: Configuration for VS Code/Cursor MCP support

Architecture

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   IDE Client   │ ──▶│   MCP Proxy      │ ──▶│ Downstream MCP  │
│ (VS Code/Cursor)│    │     Server       │    │    Servers      │
└─────────────────┘    └──────────────────┘    └─────────────────┘
                                │                       │
                                ▼                       │
                       ┌──────────────────┐             │
                       │ Dev Assistant    │             │
                       │    Agent         │             │
                       │ (LangGraph.js)   │             │
                       └──────────────────┘             │
                                │                       │
                                ▼                       │
                       ┌──────────────────┐             │
                       │  RAG Pipeline    │             │
                       │ (LangChain JS)   │             │
                       └──────────────────┘             │
                                │                       │
                                ▼                       │
                       ┌──────────────────┐             │
                       │ Mock Knowledge   │◀────────────┘
                       │     Base         │
                       └──────────────────┘

Project Structure

mcp/
├── src/
│   ├── proxy/           # MCP Proxy Server implementation
│   ├── agent/           # Dev Assistant Agent with LangGraph.js
│   ├── rag/             # RAG setup and utilities
│   ├── client/          # MCP Client testing tools
│   ├── types/           # TypeScript type definitions
│   └── utils/           # Shared utilities
├── tests/               # Unit and integration tests
├── docs/                # Documentation
│   ├── protocols_understanding.md
│   ├── mcp_server_exploration.md
│   ├── advanced_mcp_concepts.md
│   ├── realtime_rag_notes.md
│   └── ide_mcp_integration.md
├── mock_knowledge_base/ # Sample data for RAG
│   ├── docs/
│   ├── code/
│   ├── tickets/
│   └── jira_tickets.json
├── package.json
├── tsconfig.json
└── README.md

Technology Stack

Core Technologies

  • Runtime: Node.js 18+
  • Language: TypeScript 5.5+
  • Agent Framework: LangGraph.js
  • RAG Framework: LangChain JS

Dependencies

  • Protocol Communication: Built-in fetch, axios
  • Agent Building: @langchain/langgraph
  • RAG Components: @langchain/community, langchain
  • Web Framework: Express.js
  • Testing: Vitest
  • Development: tsx, eslint, prettier

Quick Start

Prerequisites

  • Node.js 18 or later
  • npm or yarn package manager
  • Git

Installation

  1. Clone the repository:
git clone https://github.com/your-username/mcp.git
cd mcp
  1. Install dependencies:
npm install --legacy-peer-deps
  1. Build the project:
npm run build
  1. Run tests:
npm test

Running Components

1. MCP Proxy Server

npm run proxy:start
# Starts on http://localhost:8002

2. Dev Assistant Agent

npm run agent:start

3. MCP Client Tester

npm run client:test

4. Development Mode (Watch)

npm run dev

Environment Setup

Required Environment Variables

Create a .env file in the root directory:

# OpenAI API Key (for LangChain)
OPENAI_API_KEY=your_openai_api_key

# GitHub Token (for GitHub MCP server)
GITHUB_TOKEN=your_github_token

# Google Drive Credentials (for GDrive MCP server)
GOOGLE_DRIVE_CLIENT_ID=your_client_id
GOOGLE_DRIVE_CLIENT_SECRET=your_client_secret

# Atlassian Credentials (for Atlassian MCP server)
ATLASSIAN_API_TOKEN=your_atlassian_token
ATLASSIAN_INSTANCE_URL=your_instance_url

# Proxy Configuration
PROXY_PORT=8002
PROXY_HOST=localhost

# Logging
LOG_LEVEL=info

MCP Server Configuration

The proxy server can route to multiple downstream MCP servers:

Supported Servers

  • Filesystem: Local file system access
  • GitHub: Repository and issue management
  • Google Drive: Document access and management
  • Atlassian: JIRA and Confluence integration

Proxy Routing Configuration

// src/proxy/config.ts
export const serverRoutes = {
  'filesystem': 'http://localhost:8001',
  'github': 'http://localhost:8003', 
  'gdrive': 'http://localhost:8004',
  'atlassian': 'http://localhost:8005'
};

IDE Integration

VS Code Setup

  1. Install the Copilot Chat extension
  2. Add to your settings.json:
{
  "github.copilot.chat.mcp.include": [
    "http://localhost:8002/mcp"
  ]
}

Cursor Setup

  1. Open Cursor settings
  2. Add MCP server URL: http://localhost:8002/mcp

Testing

Run All Tests

npm test

Run Specific Test Suites

npm run test:proxy      # Proxy server tests
npm run test:agent      # Agent tests
npm run test:rag        # RAG pipeline tests
npm run test:client     # Client tests

Test Coverage

npm run test:coverage

Documentation

Development Workflow

Code Style

  • ESLint for linting
  • Prettier for formatting
  • TypeScript strict mode enabled

Git Workflow

# Format code
npm run format

# Lint code  
npm run lint

# Run tests before commit
npm test

# Build before push
npm run build

Features Implemented

✅ Task 1: Environment Setup & Protocol Study

  • [x] TypeScript/NodeJS environment with LangGraph.js
  • [x] Mock knowledge base structure
  • [x] Comprehensive MCP/A2A protocol documentation
  • [x] Target MCP server analysis

🔄 Upcoming Tasks

  • [ ] Task 2: Explore & Test Existing MCP Servers
  • [ ] Task 3: Design & Implement MCP Proxy Server
  • [ ] Task 4: Implement Basic RAG Agent with MCP Integration
  • [ ] Task 5: Research Advanced MCP Concepts
  • [ ] Task 6: Test MCP Proxy with IDE Integration
  • [ ] Task 7: Documentation & Stand-up Preparation

Troubleshooting

Common Issues

  1. Dependency conflicts: Use npm install --legacy-peer-deps
  2. TypeScript errors: Ensure TypeScript 5.5+ is installed
  3. Build failures: Check Node.js version (18+ required)
  4. Test failures: Verify environment variables are set

Getting Help

  1. Check the documentation for detailed guides
  2. Review the protocols understanding document
  3. Examine test files for usage examples
  4. Check GitHub issues for known problems

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/new-feature
  3. Make changes and add tests
  4. Run npm test and npm run lint
  5. Commit changes: git commit -m 'Add new feature'
  6. Push to branch: git push origin feature/new-feature
  7. Submit a pull request

License

MIT License - see LICENSE file for details.

Contact

For questions or support, please open an issue on GitHub.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured