
MCP Integration Proxy
Routes requests to multiple downstream Model Context Protocol servers and provides a LangGraph.js-based agent with RAG capabilities for development assistance.
README
MCP Integration Challenge: Proxy & RAG Foundations
AI Protocol Engineer Challenge: Week 1
This repository contains the complete implementation for the MCP Integration, Proxy & RAG Foundations challenge using TypeScript/NodeJS with LangGraph.js.
Project Overview
This project implements a comprehensive MCP (Model Context Protocol) ecosystem including:
- MCP Proxy Server: Routes requests to multiple downstream MCP servers
- Dev Assistant Agent: LangGraph.js-based agent with RAG capabilities
- Mock Knowledge Base: Sample data for testing RAG functionality
- MCP Client Tester: Testing tools for MCP server interactions
- IDE Integration: Configuration for VS Code/Cursor MCP support
Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ IDE Client │ ──▶│ MCP Proxy │ ──▶│ Downstream MCP │
│ (VS Code/Cursor)│ │ Server │ │ Servers │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ │
▼ │
┌──────────────────┐ │
│ Dev Assistant │ │
│ Agent │ │
│ (LangGraph.js) │ │
└──────────────────┘ │
│ │
▼ │
┌──────────────────┐ │
│ RAG Pipeline │ │
│ (LangChain JS) │ │
└──────────────────┘ │
│ │
▼ │
┌──────────────────┐ │
│ Mock Knowledge │◀────────────┘
│ Base │
└──────────────────┘
Project Structure
mcp/
├── src/
│ ├── proxy/ # MCP Proxy Server implementation
│ ├── agent/ # Dev Assistant Agent with LangGraph.js
│ ├── rag/ # RAG setup and utilities
│ ├── client/ # MCP Client testing tools
│ ├── types/ # TypeScript type definitions
│ └── utils/ # Shared utilities
├── tests/ # Unit and integration tests
├── docs/ # Documentation
│ ├── protocols_understanding.md
│ ├── mcp_server_exploration.md
│ ├── advanced_mcp_concepts.md
│ ├── realtime_rag_notes.md
│ └── ide_mcp_integration.md
├── mock_knowledge_base/ # Sample data for RAG
│ ├── docs/
│ ├── code/
│ ├── tickets/
│ └── jira_tickets.json
├── package.json
├── tsconfig.json
└── README.md
Technology Stack
Core Technologies
- Runtime: Node.js 18+
- Language: TypeScript 5.5+
- Agent Framework: LangGraph.js
- RAG Framework: LangChain JS
Dependencies
- Protocol Communication: Built-in fetch, axios
- Agent Building: @langchain/langgraph
- RAG Components: @langchain/community, langchain
- Web Framework: Express.js
- Testing: Vitest
- Development: tsx, eslint, prettier
Quick Start
Prerequisites
- Node.js 18 or later
- npm or yarn package manager
- Git
Installation
- Clone the repository:
git clone https://github.com/your-username/mcp.git
cd mcp
- Install dependencies:
npm install --legacy-peer-deps
- Build the project:
npm run build
- Run tests:
npm test
Running Components
1. MCP Proxy Server
npm run proxy:start
# Starts on http://localhost:8002
2. Dev Assistant Agent
npm run agent:start
3. MCP Client Tester
npm run client:test
4. Development Mode (Watch)
npm run dev
Environment Setup
Required Environment Variables
Create a .env
file in the root directory:
# OpenAI API Key (for LangChain)
OPENAI_API_KEY=your_openai_api_key
# GitHub Token (for GitHub MCP server)
GITHUB_TOKEN=your_github_token
# Google Drive Credentials (for GDrive MCP server)
GOOGLE_DRIVE_CLIENT_ID=your_client_id
GOOGLE_DRIVE_CLIENT_SECRET=your_client_secret
# Atlassian Credentials (for Atlassian MCP server)
ATLASSIAN_API_TOKEN=your_atlassian_token
ATLASSIAN_INSTANCE_URL=your_instance_url
# Proxy Configuration
PROXY_PORT=8002
PROXY_HOST=localhost
# Logging
LOG_LEVEL=info
MCP Server Configuration
The proxy server can route to multiple downstream MCP servers:
Supported Servers
- Filesystem: Local file system access
- GitHub: Repository and issue management
- Google Drive: Document access and management
- Atlassian: JIRA and Confluence integration
Proxy Routing Configuration
// src/proxy/config.ts
export const serverRoutes = {
'filesystem': 'http://localhost:8001',
'github': 'http://localhost:8003',
'gdrive': 'http://localhost:8004',
'atlassian': 'http://localhost:8005'
};
IDE Integration
VS Code Setup
- Install the Copilot Chat extension
- Add to your
settings.json
:
{
"github.copilot.chat.mcp.include": [
"http://localhost:8002/mcp"
]
}
Cursor Setup
- Open Cursor settings
- Add MCP server URL:
http://localhost:8002/mcp
Testing
Run All Tests
npm test
Run Specific Test Suites
npm run test:proxy # Proxy server tests
npm run test:agent # Agent tests
npm run test:rag # RAG pipeline tests
npm run test:client # Client tests
Test Coverage
npm run test:coverage
Documentation
- Protocols Understanding: MCP and A2A protocol explanation
- MCP Server Exploration: Target server analysis
- Advanced MCP Concepts: Gateway, RBAC, and streaming concepts
- Real-time RAG Notes: Pathway and real-time indexing concepts
- IDE Integration Guide: Step-by-step IDE setup
Development Workflow
Code Style
- ESLint for linting
- Prettier for formatting
- TypeScript strict mode enabled
Git Workflow
# Format code
npm run format
# Lint code
npm run lint
# Run tests before commit
npm test
# Build before push
npm run build
Features Implemented
✅ Task 1: Environment Setup & Protocol Study
- [x] TypeScript/NodeJS environment with LangGraph.js
- [x] Mock knowledge base structure
- [x] Comprehensive MCP/A2A protocol documentation
- [x] Target MCP server analysis
🔄 Upcoming Tasks
- [ ] Task 2: Explore & Test Existing MCP Servers
- [ ] Task 3: Design & Implement MCP Proxy Server
- [ ] Task 4: Implement Basic RAG Agent with MCP Integration
- [ ] Task 5: Research Advanced MCP Concepts
- [ ] Task 6: Test MCP Proxy with IDE Integration
- [ ] Task 7: Documentation & Stand-up Preparation
Troubleshooting
Common Issues
- Dependency conflicts: Use
npm install --legacy-peer-deps
- TypeScript errors: Ensure TypeScript 5.5+ is installed
- Build failures: Check Node.js version (18+ required)
- Test failures: Verify environment variables are set
Getting Help
- Check the documentation for detailed guides
- Review the protocols understanding document
- Examine test files for usage examples
- Check GitHub issues for known problems
Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature/new-feature
- Make changes and add tests
- Run
npm test
andnpm run lint
- Commit changes:
git commit -m 'Add new feature'
- Push to branch:
git push origin feature/new-feature
- Submit a pull request
License
MIT License - see LICENSE file for details.
Contact
For questions or support, please open an issue on GitHub.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.