MCP Image Recognition Server
Enables image analysis and recognition through multiple LLM vision models (Gemini, GPT-4o, Qwen-VL, Doubao) by accepting image URLs or Base64 data and returning text descriptions or answers to questions about the images.
README
MCP Image Recognition Server (Python)
An MCP server implementation in Python providing image recognition capabilities using various LLM providers (Gemini, OpenAI, Qwen/Tongyi, Doubao, etc.).
Features
- Image Recognition: Describe images or answer questions about them.
- Multi-Model Support: Dynamically switch between Gemini, GPT-4o, Qwen-VL, Doubao, etc.
- Flexible: Accepts image URLs or Base64 data.
Quick Setup (Recommended)
We provide automated scripts to set up the environment and dependencies in one click.
Linux / macOS
git clone https://github.com/glasses666/mcp-image-recognition-py.git
cd mcp-image-recognition-py
./setup.sh
Windows
- Clone or download this repository.
- Double-click
setup.bat.
After the script finishes, simply edit the .env file with your API keys.
Installation & Usage (Manual)
If you prefer manual installation or want to use uv:
Prerequisites
- Python 3.10 or higher
- An API Key for your preferred model provider (Google Gemini, OpenAI, Aliyun DashScope, etc.)
Method 1: Using uv (Recommended)
uv is an extremely fast Python package manager.
1. Run directly with uv run
You don't need to manually create a virtual environment.
# Clone the repo
git clone https://github.com/glasses666/mcp-image-recognition-py.git
cd mcp-image-recognition-py
# Create .env file with your API keys
cp .env.example .env
# Edit .env with your keys
# Run the server
uv run server.py
2. Using uvx (for ephemeral execution)
If you want to run it without cloning the repo explicitly (experimental support via git):
# Note: You still need to provide environment variables.
# It's easier to clone and use 'uv run' for persistent config via .env
uvx --from git+https://github.com/glasses666/mcp-image-recognition-py mcp-image-recognition
Method 2: Standard Python (pip)
Linux / macOS
-
Clone and Setup:
git clone https://github.com/glasses666/mcp-image-recognition-py.git cd mcp-image-recognition-py python3 -m venv venv source venv/bin/activate pip install -r requirements.txt -
Configure:
cp .env.example .env # Edit .env and add your API keys -
Run:
python server.py
Windows
-
Clone and Setup:
git clone https://github.com/glasses666/mcp-image-recognition-py.git cd mcp-image-recognition-py python -m venv venv .\venv\Scripts\activate pip install -r requirements.txt -
Configure:
copy .env.example .env # Edit .env and add your API keys -
Run:
python server.py
Configuration
Create a .env file in the project root based on .env.example:
1. For Google Gemini (Recommended for speed/cost)
Get an API key from Google AI Studio.
GEMINI_API_KEY=your_google_api_key
DEFAULT_MODEL=gemini-1.5-flash
2. For Tongyi Qianwen (Qwen - Alibaba Cloud)
Get an API key from Aliyun DashScope.
OPENAI_API_KEY=your_dashscope_api_key
OPENAI_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
DEFAULT_MODEL=qwen-vl-max
3. For Doubao (Volcengine)
Get an API key from Volcengine Ark.
OPENAI_API_KEY=your_volcengine_api_key
OPENAI_BASE_URL=https://ark.cn-beijing.volces.com/api/v3
DEFAULT_MODEL=doubao-pro-32k
Agent AI Configuration (Claude Desktop, etc.)
To use this server with an MCP client (like Claude Desktop), add it to your configuration file.
Configuration File Paths
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json(if available)
Configuration JSON
Option A: Using uv (Easiest)
If you have uv installed, you can let it handle the environment.
{
"mcpServers": {
"image-recognition": {
"command": "/path/to/uv",
"args": [
"run",
"--directory",
"/absolute/path/to/mcp-image-recognition-py",
"server.py"
],
"env": {
"GEMINI_API_KEY": "your_gemini_key_here",
"OPENAI_API_KEY": "your_openai_key_here",
"OPENAI_BASE_URL": "https://api.openai.com/v1",
"DEFAULT_MODEL": "gemini-1.5-flash"
}
}
}
}
Option B: Standard Python Venv Ensure you provide the absolute path to the python executable in your virtual environment.
{
"mcpServers": {
"image-recognition": {
"command": "/absolute/path/to/mcp-image-recognition-py/venv/bin/python",
"args": [
"/absolute/path/to/mcp-image-recognition-py/server.py"
],
"env": {
"GEMINI_API_KEY": "your_gemini_key_here",
"OPENAI_API_KEY": "your_openai_key_here",
"OPENAI_BASE_URL": "https://api.openai.com/v1",
"DEFAULT_MODEL": "gemini-1.5-flash"
}
}
}
}
Windows Note: For paths, use double backslashes \\ (e.g., C:\\Users\\Name\\...).
Usage Tool
recognize_image
Analyzes an image and returns a text description.
Parameters:
image(string, required): The image to analyze. Supports:- HTTP/HTTPS URLs (e.g.,
https://example.com/cat.jpg) - Base64 encoded strings (with or without
)
- HTTP/HTTPS URLs (e.g.,
prompt(string, optional): Specific instruction. Default: "Describe this image".model(string, optional): Override the default model for this specific request.
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.