MCP Image Recognition Server

MCP Image Recognition Server

Enables image analysis and recognition through multiple LLM vision models (Gemini, GPT-4o, Qwen-VL, Doubao) by accepting image URLs or Base64 data and returning text descriptions or answers to questions about the images.

Category
Visit Server

README

MCP Image Recognition Server (Python)

An MCP server implementation in Python providing image recognition capabilities using various LLM providers (Gemini, OpenAI, Qwen/Tongyi, Doubao, etc.).

Features

  • Image Recognition: Describe images or answer questions about them.
  • Multi-Model Support: Dynamically switch between Gemini, GPT-4o, Qwen-VL, Doubao, etc.
  • Flexible: Accepts image URLs or Base64 data.

Quick Setup (Recommended)

We provide automated scripts to set up the environment and dependencies in one click.

Linux / macOS

git clone https://github.com/glasses666/mcp-image-recognition-py.git
cd mcp-image-recognition-py
./setup.sh

Windows

  1. Clone or download this repository.
  2. Double-click setup.bat.

After the script finishes, simply edit the .env file with your API keys.


Installation & Usage (Manual)

If you prefer manual installation or want to use uv:

Prerequisites

  • Python 3.10 or higher
  • An API Key for your preferred model provider (Google Gemini, OpenAI, Aliyun DashScope, etc.)

Method 1: Using uv (Recommended)

uv is an extremely fast Python package manager.

1. Run directly with uv run

You don't need to manually create a virtual environment.

# Clone the repo
git clone https://github.com/glasses666/mcp-image-recognition-py.git
cd mcp-image-recognition-py

# Create .env file with your API keys
cp .env.example .env
# Edit .env with your keys

# Run the server
uv run server.py

2. Using uvx (for ephemeral execution)

If you want to run it without cloning the repo explicitly (experimental support via git):

# Note: You still need to provide environment variables. 
# It's easier to clone and use 'uv run' for persistent config via .env
uvx --from git+https://github.com/glasses666/mcp-image-recognition-py mcp-image-recognition

Method 2: Standard Python (pip)

Linux / macOS

  1. Clone and Setup:

    git clone https://github.com/glasses666/mcp-image-recognition-py.git
    cd mcp-image-recognition-py
    python3 -m venv venv
    source venv/bin/activate
    pip install -r requirements.txt
    
  2. Configure:

    cp .env.example .env
    # Edit .env and add your API keys
    
  3. Run:

    python server.py
    

Windows

  1. Clone and Setup:

    git clone https://github.com/glasses666/mcp-image-recognition-py.git
    cd mcp-image-recognition-py
    python -m venv venv
    .\venv\Scripts\activate
    pip install -r requirements.txt
    
  2. Configure:

    copy .env.example .env
    # Edit .env and add your API keys
    
  3. Run:

    python server.py
    

Configuration

Create a .env file in the project root based on .env.example:

1. For Google Gemini (Recommended for speed/cost)

Get an API key from Google AI Studio.

GEMINI_API_KEY=your_google_api_key
DEFAULT_MODEL=gemini-1.5-flash

2. For Tongyi Qianwen (Qwen - Alibaba Cloud)

Get an API key from Aliyun DashScope.

OPENAI_API_KEY=your_dashscope_api_key
OPENAI_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
DEFAULT_MODEL=qwen-vl-max

3. For Doubao (Volcengine)

Get an API key from Volcengine Ark.

OPENAI_API_KEY=your_volcengine_api_key
OPENAI_BASE_URL=https://ark.cn-beijing.volces.com/api/v3
DEFAULT_MODEL=doubao-pro-32k

Agent AI Configuration (Claude Desktop, etc.)

To use this server with an MCP client (like Claude Desktop), add it to your configuration file.

Configuration File Paths

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json (if available)

Configuration JSON

Option A: Using uv (Easiest) If you have uv installed, you can let it handle the environment.

{
  "mcpServers": {
    "image-recognition": {
      "command": "/path/to/uv",
      "args": [
        "run",
        "--directory",
        "/absolute/path/to/mcp-image-recognition-py",
        "server.py"
      ],
      "env": {
        "GEMINI_API_KEY": "your_gemini_key_here",
        "OPENAI_API_KEY": "your_openai_key_here",
        "OPENAI_BASE_URL": "https://api.openai.com/v1",
        "DEFAULT_MODEL": "gemini-1.5-flash"
      }
    }
  }
}

Option B: Standard Python Venv Ensure you provide the absolute path to the python executable in your virtual environment.

{
  "mcpServers": {
    "image-recognition": {
      "command": "/absolute/path/to/mcp-image-recognition-py/venv/bin/python", 
      "args": [
        "/absolute/path/to/mcp-image-recognition-py/server.py"
      ],
      "env": {
        "GEMINI_API_KEY": "your_gemini_key_here",
        "OPENAI_API_KEY": "your_openai_key_here",
        "OPENAI_BASE_URL": "https://api.openai.com/v1",
        "DEFAULT_MODEL": "gemini-1.5-flash"
      }
    }
  }
}

Windows Note: For paths, use double backslashes \\ (e.g., C:\\Users\\Name\\...).


Usage Tool

recognize_image

Analyzes an image and returns a text description.

Parameters:

  • image (string, required): The image to analyze. Supports:
    • HTTP/HTTPS URLs (e.g., https://example.com/cat.jpg)
    • Base64 encoded strings (with or without data:image/...;base64, prefix)
  • prompt (string, optional): Specific instruction. Default: "Describe this image".
  • model (string, optional): Override the default model for this specific request.

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured