
MCP Hub Tools
An MCP server that allows searching for and retrieving information about Model Context Protocol servers registered on the MCP Hub.
Tools
search_mcp_hub
Search for MCPs on the MCP Hub
README
mcphub_tools MCP Server
Mcp tools powered by aimcp, find mcps whatever you want. This server allows searching the MCP Hub for available MCPs.
Open Protocol
This server implements the Model Context Protocol (MCP). It acts as an MCP server that can be connected to by MCP clients (like compatible AI assistants or development tools).
Introduction
mcphub_tools
is an MCP server designed to interact with the MCP Hub. Its primary function is to provide a tool that allows users to search for MCPs (Model Context Protocols/Servers) registered on the hub based on keywords.
Tools
This server provides the following tool:
search_mcp_hub
- Description: Searches for MCPs on the MCP Hub.
- Input Schema:
{ "type": "object", "properties": { "keywords": { "type": "string", "description": "Keywords to search for MCPs" } }, "required": ["keywords"] }
- Output: Returns a JSON string containing the search results from the MCP Hub API.
get_mcp_info
- Description: Gets detailed information about a specific MCP.
- Input Schema:
{ "type": "object", "properties": { "id": { "type": "string", "description": "MCP identifier (UUID)" } }, "required": ["id"] }
- Output: Returns a JSON string containing the detailed information about the specified MCP.
Implementation Options
MCP Hub supports two different ways to implement MCP servers:
1. Standard stdio-based MCP Server
This is the traditional implementation where the MCP server communicates with clients through standard input/output (stdio). This approach is ideal for standalone command-line tools that can be integrated with MCP clients like Claude Desktop.
The easiest way to use the stdio-based implementation is through our published package:
# Using npx (recommended for most users)
npx @aimcp/tools
# Using uvx (faster startup)
uvx @aimcp/tools
2. HTTP-based MCP Server
MCP Hub also provides an HTTP-based implementation that allows AI assistants and other tools to connect to the MCP server over HTTP. This is implemented in the MCP Hub's API at /api/open/v1/streamable
.
The HTTP endpoint is available at:
https://mcp.aimcp.info/api/open/v1/streamable
Usage
Prerequisites
- Node.js and npm (or pnpm/yarn) installed for the stdio-based implementation.
- An API key from MCP Hub (https://www.aimcp.info).
How to get an API key
- Go to https://www.aimcp.info.
- Sign up or log in.
- Navigate to your profile or account settings.
- Look for an option to generate or retrieve your API key.
- Or you can access here to generate an API key. NOTE: The API key has rate limits for 20 requests per hour.
Authentication
The MCP API requires authentication with a valid API key. This key must be provided via:
- For stdio-based implementation: The environment variable
MCP_HUB_API_KEY
. - For HTTP-based implementation: The
Authorization
header as a Bearer token.
Authorization: Bearer YOUR_API_KEY
Integration with AI Assistants and MCP Clients
Claude Desktop Configuration
To use MCP Hub with Claude Desktop:
-
Locate your Claude Desktop configuration file:
- Windows:
%APPDATA%\claude\config.json
- macOS:
~/Library/Application Support/claude/config.json
or~/.config/claude/config.json
- Linux:
~/.config/claude/config.json
- Windows:
-
Add the following configuration:
{
"mcpServers": {
"mcp-hub": {
"command": "npx",
"args": ["@aimcp/tools"],
"environment": {
"MCP_HUB_API_KEY": "YOUR_API_KEY"
}
}
}
}
- Restart Claude Desktop to apply the changes.
- In your conversation, you can access MCP Hub tools by typing "@mcp-hub".
Cline and Other CLI Tools
For command-line based tools like Cline:
- Create a configuration file named
servers.json
in your project directory:
{
"servers": [
{
"name": "mcp-hub-tools",
"command": ["npx", "@aimcp/tools"],
"environment": {
"MCP_HUB_API_KEY": "YOUR_API_KEY"
}
}
]
}
- Launch the tool with reference to this configuration:
cline --mcp-servers-config ./servers.json
For Tools Supporting Remote MCP Servers
Some newer MCP clients support direct HTTP connections. Configure them using:
{
"mcpServers": {
"mcp-hub-http": {
"url": "https://mcp.aimcp.info/api/open/v1/streamable",
"headers": {
"Authorization": "Bearer YOUR_API_KEY"
}
}
}
}
For Tools Using File-based Configuration (Cursor, etc.)
- Create a configuration file:
{
"mcpServers": {
"mcp-hub": {
"command": "npx",
"args": ["@aimcp/tools"],
"environment": {
"MCP_HUB_API_KEY": "YOUR_API_KEY"
}
}
}
}
- Reference this file in your tool's settings or launch with the appropriate configuration parameter.
Running Manually
You can also run the stdio-based server manually for testing (ensure MCP_HUB_API_KEY
is set in your environment):
export MCP_HUB_API_KEY="YOUR_API_KEY_HERE"
npx @aimcp/tools
API Interface
This server interacts with the following MCP Hub API endpoint:
- Endpoint:
GET https://www.aimcp.info/api/open/v1/search
- Authentication: Requires a Bearer token in the
Authorization
header, using theMCP_HUB_API_KEY
. - Query Parameter:
keywords
(string)
Using the HTTP-based MCP API
MCP Hub provides an HTTP-based MCP server at /api/open/v1/streamable
that implements the Model Context Protocol. This allows AI assistants and tools to search for MCPs and retrieve MCP information directly.
Connection Steps
- First, establish a connection to get a session ID:
GET /api/open/v1/streamable
Authorization: Bearer YOUR_API_KEY
Response:
{
"success": true,
"sessionId": "194830ab-eb0b-4d17-a574-af96705276c2",
"message": "Connection established. Use this sessionId for subsequent calls."
}
- Call a tool with the session ID:
POST /api/open/v1/streamable?sessionId=194830ab-eb0b-4d17-a574-af96705276c2
Content-Type: application/json
Authorization: Bearer YOUR_API_KEY
{
"jsonrpc": "2.0",
"method": "callTool",
"params": {
"name": "search_mcp_hub",
"arguments": {
"keywords": "example"
}
},
"id": "call-1"
}
Development & Deployment
Development
- Install Dependencies:
pnpm install
- Build:
pnpm run build
(compiles TypeScript to JavaScript inbuild/
) - Watch Mode:
pnpm run watch
(automatically recompiles on changes) - Testing with Inspector:
pnpm run inspector
(runs the server with the MCP Inspector tool)
Creating Your Own stdio-based MCP Server
If you want to create your own stdio-based MCP server, follow these steps:
-
Set up your project:
mkdir my-mcp-server cd my-mcp-server npm init -y npm install @modelcontextprotocol/sdk
-
Create your server implementation:
// index.ts
import { Server } from '@modelcontextprotocol/sdk/server';
import {
CallToolRequestSchema,
ListToolsRequestSchema,
McpError,
ErrorCode
} from '@modelcontextprotocol/sdk/types';
import { StdioTransport } from '@modelcontextprotocol/sdk/transports/stdio';
// Create an MCP server instance
const server = new Server(
{
name: "my-mcp-server",
version: "1.0.0"
},
{
capabilities: {
tools: {},
}
}
);
// Set up tool handlers
server.setRequestHandler(ListToolsRequestSchema, async () => ({
tools: [
{
name: 'my_tool',
description: 'Description of my tool',
inputSchema: {
type: 'object',
properties: {
param1: {
type: 'string',
description: 'Description of param1',
},
},
required: ['param1'],
},
},
],
}));
server.setRequestHandler(CallToolRequestSchema, async (request) => {
// Extract tool name and arguments
const toolName = request.params.name;
const args = request.params.arguments;
if (toolName === 'my_tool') {
// Validate arguments
if (typeof args !== 'object' || args === null || typeof args.param1 !== 'string') {
throw new McpError(
ErrorCode.InvalidParams,
'Invalid arguments. Requires "param1" (string).'
);
}
try {
// Implement your tool logic here
const result = `Processed: ${args.param1}`;
return {
content: [
{
type: 'text',
text: result,
},
],
};
} catch (error) {
return {
content: [
{
type: 'text',
text: `Error: ${error instanceof Error ? error.message : String(error)}`,
},
],
isError: true,
};
}
} else {
throw new McpError(
ErrorCode.MethodNotFound,
`Unknown tool: ${toolName}`
);
}
});
// Connect the server to stdin/stdout
const transport = new StdioTransport();
server.connect(transport).catch(console.error);
-
Compile and run your server:
npx tsc node dist/index.js
-
Test your server with the MCP Inspector tool:
npx @modelcontextprotocol/inspector
Deployment
- Ensure the server is built (
pnpm run build
). - The
build
directory contains the necessary JavaScript files. - The server can be run using
node build/index.js
or the commandmcphub_tools
if the package is installed appropriately (e.g., globally or linked). - Configure your MCP client/manager to point to the server executable and provide the
MCP_HUB_API_KEY
environment variable.
You can also publish your MCP server to npm so others can install and use it.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.