MCP Graylog Server

MCP Graylog Server

Integrates AI assistants with Graylog to query and analyze log data using Elasticsearch syntax and stream-specific filtering. It enables users to perform advanced searches, retrieve log statistics, and manage Graylog streams through natural language.

Category
Visit Server

README

MCP Graylog Server

A Model Context Protocol (MCP) server for integrating with Graylog, enabling AI assistants to query and analyze log data.

Python 3.8+ License: MIT Docker

Quick Start

Using Docker (Recommended)

# Build and run with docker-compose
docker-compose up -d

# Or run directly with docker
docker run -d \
  --name mcp-graylog \
  -e GRAYLOG_ENDPOINT=https://your-graylog-server:9000 \
  -e GRAYLOG_USERNAME=your-username \
  -e GRAYLOG_PASSWORD=your-password \
  -p 8000:8000 \
  mcp-graylog:latest

Local Development

# Clone and setup
git clone <repository-url>
cd mcp_graylog

# Install dependencies
./install_deps.sh

# Start the server
./start.sh

Features

  • Advanced Log Querying: Query Graylog logs using Elasticsearch query syntax
  • Stream Management: Search across multiple indices and streams
  • Time-based Filtering: Filter logs by time range, fields, and custom criteria
  • Statistics & Aggregations: Retrieve log statistics and aggregations
  • Docker Support: Full container support with environment-based configuration
  • Cursor Integration: Seamless integration with Cursor AI assistant
  • Health Monitoring: Built-in health checks and system monitoring
  • Error Handling: Comprehensive error handling and logging
  • Development Tools: Complete development toolchain with testing and linting

Table of Contents

Installation

Using Docker (Recommended)

The Docker container uses a custom entrypoint script that provides:

  • Environment validation and setup
  • Application configuration validation
  • Proper logging and error handling
  • Graceful startup process

Quick Setup

# Build the image
docker build -t mcp-graylog .

# Run with docker-compose (recommended)
docker-compose up -d

# Or run directly with docker
docker run -d \
  --name mcp-graylog \
  -e GRAYLOG_ENDPOINT=https://your-graylog-server:9000 \
  -e GRAYLOG_USERNAME=your-username \
  -e GRAYLOG_PASSWORD=your-password \
  -p 8000:8000 \
  mcp-graylog:latest

Advanced Docker Deployment

docker run -d \
  --name mcp-graylog \
  -p 8000:8000 \
  -e GRAYLOG_ENDPOINT=https://your-graylog-server:9000 \
  -e GRAYLOG_USERNAME=your-username \
  -e GRAYLOG_PASSWORD=your-password \
  -e GRAYLOG_VERIFY_SSL=true \
  -e GRAYLOG_TIMEOUT=30 \
  -e MCP_SERVER_PORT=8000 \
  -e MCP_SERVER_HOST=0.0.0.0 \
  -e LOG_LEVEL=INFO \
  -e LOG_FORMAT=json \
  --restart unless-stopped \
  mcp-graylog:latest

Local Development

  1. Clone the repository:
git clone <repository-url>
cd mcp_graylog
  1. Install dependencies:
# Using the installation script (recommended)
./install_deps.sh

# Or install manually
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
pip install -e .
  1. Set up environment variables:
cp env.example .env
# Edit .env with your Graylog credentials
  1. Run the server:
# Using the startup script (recommended)
./start.sh

# Or run directly
python -m mcp_graylog.server

Configuration

The server can be configured using environment variables:

Variable Description Required Default
GRAYLOG_ENDPOINT Graylog server URL Yes -
GRAYLOG_USERNAME Graylog username Yes -
GRAYLOG_PASSWORD Graylog password Yes -
GRAYLOG_VERIFY_SSL Verify SSL certificates No true
GRAYLOG_TIMEOUT Request timeout (seconds) No 30
MCP_SERVER_PORT MCP server port No 8000
MCP_SERVER_HOST MCP server host No 0.0.0.0
LOG_LEVEL Logging level No INFO
LOG_FORMAT Log format (json/text) No json

Both username and password are required.

Usage

Available Tools

The MCP Graylog server provides the following tools:

Core Search Tools

  • search_logs: Search logs using Elasticsearch query syntax
  • search_stream_logs: Search logs within a specific Graylog stream
  • get_last_event_from_stream: Get the most recent event from a specific stream

Stream Management Tools

  • list_streams: List all available Graylog streams
  • search_streams_by_name: Search for streams by name or partial name
  • get_stream_info: Get detailed information about a specific stream

Analysis Tools

  • get_log_statistics: Get log statistics and aggregations
  • get_error_logs: Get error logs from the last specified time range
  • get_log_count_by_level: Get log count aggregated by log level

System Tools

  • get_system_info: Get Graylog system information and status
  • test_connection: Test connection to Graylog server

Example Queries

Basic Log Query

# Query logs from the last hour
{
    "query": "*",
    "time_range": "1h",
    "limit": 50
}

Stream-Specific Queries

# Get last event from 1c_eventlog stream
{
    "stream_id": "5abb3f2f7bb9fd00011595fe",
    "query": "*",
    "limit": 1
}

# Search for error messages in a specific stream
{
    "stream_id": "5abb3f2f7bb9fd00011595fe",
    "query": "level:ERROR",
    "time_range": "24h",
    "limit": 10
}

Advanced Query with Filters

# Query error logs from specific source
{
    "query": "level:ERROR AND source:web-server",
    "time_range": "24h",
    "fields": ["message", "level", "source", "timestamp"],
    "limit": 50
}

Aggregation Query

# Get error count by source
{
    "query": "level:ERROR",
    "time_range": "7d",
    "aggregation": {
        "type": "terms",
        "field": "source",
        "size": 10
    }
}

Important Note on Request Format

All API/tool requests that accept parameters (such as search_logs, search_stream_logs, get_log_statistics, etc.) must be provided as JSON objects, NOT as strings. Passing a string will result in an error.

Correct:

{
  "stream_id": "5abb3f2f7bb9fd00011595fe",
  "query": "*",
  "limit": 10
}

Incorrect:

"{stream_id:5abb3f2f7bb9fd00011595fe, query: *, limit: 10}"

Development

Available Commands

The project includes a comprehensive Makefile with the following commands:

# Development
make install          # Install the package in development mode
make test            # Run tests
make lint            # Run linting checks
make format          # Format code
make clean           # Clean build artifacts
make check           # Run all checks (format, lint, test)

# Docker
make docker-build    # Build Docker image
make docker-run      # Run Docker container
make docker-stop     # Stop Docker container
make docker-logs     # Show Docker container logs

# Testing
make test-entrypoint # Test the entrypoint configuration
make test-pydantic   # Test the Pydantic fix
make test-fixes      # Test the Pydantic and FastMCP fixes

# Setup
make install-deps    # Install dependencies using the installation script
make start           # Start the server using the startup script

# Docker Compose
make docker-compose-up    # Start services with docker-compose
make docker-compose-down  # Stop services with docker-compose
make docker-compose-logs  # Show docker-compose logs

Running Tests

# Run all tests
pytest tests/ -v

# Run specific test
pytest tests/test_client.py -v

# Run with coverage
pytest tests/ --cov=mcp_graylog

Code Quality

# Format code
black .
isort .

# Lint code
black --check .
isort --check-only .
mypy .

# Run all checks
make check

Cursor Integration

Setting up MCP Graylog Server in Cursor

The Docker container uses a custom entrypoint script that provides enhanced startup capabilities including environment validation, configuration checks, and proper logging.

Quick Setup

  1. Test your setup first:

    # Run the integration test script
    python3 test_cursor_integration.py
    
  2. Deploy the MCP Graylog server using Docker:

    # Build the image
    docker build -t mcp-graylog .
    
    # Run the MCP Graylog server container
    docker run -d \
      --name mcp-graylog \
      -p 8000:8000 \
            -e GRAYLOG_ENDPOINT=https://your-graylog-server:9000 \
       -e GRAYLOG_USERNAME=your-username \
       -e GRAYLOG_PASSWORD=your-password \
       -e GRAYLOG_VERIFY_SSL=true \
       -e GRAYLOG_TIMEOUT=30 \
       mcp-graylog:latest
    
  3. Configure Cursor to use the MCP server:

    Open Cursor's settings and add one of the following configurations:

    **Username/Password Authentication**
    
    {
      "mcpServers": {
        "graylog": {
          "command": "docker",
          "args": [
            "run", 
            "--rm", 
            "-i", 
            "-e", "GRAYLOG_ENDPOINT=https://your-graylog-server:9000",
            "-e", "GRAYLOG_USERNAME=your-username",
            "-e", "GRAYLOG_PASSWORD=your-password",
            "-e", "GRAYLOG_VERIFY_SSL=true",
            "-e", "GRAYLOG_TIMEOUT=30",
            "mcp-graylog:latest"
          ],
          "env": {}
        }
      }
    }
    
  4. Restart Cursor to load the new MCP server configuration.

Using the MCP Graylog Server in Cursor

Once configured, you can use the Graylog integration directly in Cursor's chat:

Example Queries:

Search for error logs:

Search for error logs from the last hour in Graylog

Get log statistics:

Get log count by level for the last 24 hours

Search specific streams:

List all available Graylog streams and show me the logs from the web-server stream

Complex queries:

Search for timeout errors from web-server or api-server in the last 7 days

Example Workflow in Cursor

  1. Debugging Issues:

    "I'm seeing errors in my application. Can you check the Graylog logs for any ERROR level messages from the last 2 hours?"
    
  2. Performance Analysis:

    "Show me the log count by level for the last 24 hours to understand the application's health"
    
  3. Stream-specific Analysis:

    "List all Graylog streams and then search for any timeout errors in the web-server stream"
    
  4. System Monitoring:

    "Get the Graylog system information and check if the connection is healthy"
    

Troubleshooting

Connection Issues

  • Verify Graylog endpoint is accessible
  • Check credentials are correct
  • Ensure firewall allows connections to Graylog port

MCP Server Issues

  • Check server logs: docker logs mcp-graylog
  • Check entrypoint logs: docker logs mcp-graylog | grep -E "(ERROR|WARNING|Starting|Checking)"
  • Test connection: Use the test_connection function
  • Verify environment variables are set correctly
  • Test entrypoint manually: docker run --rm mcp-graylog:latest ./entrypoint.sh

Pydantic Import Errors

  • If you see PydanticImportError: BaseSettings has been moved to pydantic-settings, run: ./install_deps.sh
  • Ensure pydantic-settings>=2.0.0 is installed: pip install pydantic-settings>=2.0.0
  • Test the fix: make test-pydantic

FastMCP API Errors

  • If you see AttributeError: 'FastMCP' object has no attribute 'function', the API has been updated to use @app.tool() instead of @app.function()
  • Test the fixes: make test-fixes

Cursor Integration Issues

  • Restart Cursor after configuration changes
  • Check Cursor's developer console for MCP errors
  • Verify the MCP server is running on the expected port
  • Use the test script: python3 test_cursor_integration.py

Additional Documentation

Project Structure

mcp_graylog/
├── mcp_graylog/           # Main package
│   ├── __init__.py
│   ├── client.py          # Graylog client
│   ├── config.py          # Configuration management
│   ├── server.py          # MCP server implementation
│   └── utils.py           # Utility functions
├── tests/                 # Test suite
├── examples/              # Usage examples
├── logs/                  # Log files
├── docker-compose.yml     # Docker Compose configuration
├── Dockerfile            # Docker image definition
├── entrypoint.sh         # Docker entrypoint script
├── start.sh              # Development startup script
├── install_deps.sh       # Dependency installation script
├── Makefile              # Development commands
├── pyproject.toml        # Project metadata
├── requirements.txt       # Python dependencies
└── README.md             # This file

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Make your changes and add tests
  4. Run the test suite: make test
  5. Format your code: make format
  6. Submit a pull request

License

MIT License - see LICENSE file for details.

Support

  • Issues: Report bugs and feature requests on GitHub
  • Documentation: Check the complete documentation
  • Examples: See the examples directory for usage examples
  • Testing: Use the provided test scripts to verify your setup

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured