MCP Gemini Server
A server implementing the Model Context Protocol that enables AI assistants like Claude to interact with Google's Gemini API for text generation, text analysis, and chat conversations.
amitsh06
README
MCP Gemini Server
A server implementation of the Model Context Protocol (MCP) to enable AI assistants like Claude to interact with Google's Gemini API.
Project Overview
This project implements a server that follows the Model Context Protocol, allowing AI assistants to communicate with Google's Gemini models. With this MCP server, AI assistants can request text generation, text analysis, and maintain chat conversations through the Gemini API.
Features
- Client-Server Communication: Implements MCP protocol for secure message exchange between client and server.
- Message Processing: Handles and processes client requests, sending appropriate responses.
- Error Handling & Logging: Logs server activities and ensures smooth error recovery.
- Environment Variables Support: Uses
.env
file for storing sensitive information securely. - API Testing & Debugging: Supports manual and automated testing using Postman and test scripts.
Installation
Prerequisites
- Python 3.7 or higher
- Google AI API key
Setup
- Clone this repository:
git clone https://github.com/yourusername/mcp-gemini-server.git
cd mcp-gemini-server
- Create a virtual environment:
python -m venv venv
-
Activate the virtual environment:
- Windows:
venv\Scripts\activate
- macOS/Linux:
source venv/bin/activate
- Windows:
-
Install dependencies:
pip install -r requirements.txt
- Create a
.env
file in the root directory with your Gemini API key:
GEMINI_API_KEY=your_api_key_here
Usage
- Start the server:
python server.py
-
The server will run on
http://localhost:5000/
by default -
Send MCP requests to the
/mcp
endpoint using POST method
Example Request
import requests
url = 'http://localhost:5000/mcp'
payload = {
'action': 'generate_text',
'parameters': {
'prompt': 'Write a short poem about AI',
'temperature': 0.7
}
}
response = requests.post(url, json=payload)
print(response.json())
API Reference
Endpoints
GET /health
: Check if the server is runningGET /list-models
: List available Gemini modelsPOST /mcp
: Main endpoint for MCP requests
MCP Actions
1. generate_text
Generate text content with Gemini.
Parameters:
prompt
(required): The text prompt for generationtemperature
(optional): Controls randomness (0.0 to 1.0)max_tokens
(optional): Maximum tokens to generate
Example:
{
"action": "generate_text",
"parameters": {
"prompt": "Write a short story about a robot",
"temperature": 0.8,
"max_tokens": 500
}
}
2. analyze_text
Analyze text content.
Parameters:
text
(required): The text to analyzeanalysis_type
(optional): Type of analysis ('sentiment', 'summary', 'keywords', or 'general')
Example:
{
"action": "analyze_text",
"parameters": {
"text": "The weather today is wonderful! I love how the sun is shining.",
"analysis_type": "sentiment"
}
}
3. chat
Have a conversation with Gemini.
Parameters:
messages
(required): Array of message objects with 'role' and 'content'temperature
(optional): Controls randomness (0.0 to 1.0)
Example:
{
"action": "chat",
"parameters": {
"messages": [
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing well! How can I help?"},
{"role": "user", "content": "Tell me about quantum computing"}
],
"temperature": 0.7
}
}
Error Handling
The server returns appropriate HTTP status codes and error messages:
200
: Successful request400
: Bad request (missing or invalid parameters)500
: Server error (API issues, etc.)
Testing
Use the included test script to test various functionalities:
# Test all functionalities
python test_client.py
# Test specific functionality
python test_client.py text # Test text generation
python test_client.py analyze # Test text analysis
python test_client.py chat # Test chat functionality
MCP Protocol Specification
The Model Context Protocol implemented here follows these specifications:
-
Request Format:
action
: String specifying the operationparameters
: Object containing action-specific parameters
-
Response Format:
result
: Object containing the operation resulterror
: String explaining any error (when applicable)
License
MIT License
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
MCP Package Docs Server
Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.
Claude Code MCP
An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.
@kazuph/mcp-taskmanager
Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.
Linear MCP Server
Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.
mermaid-mcp-server
A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.
Jira-Context-MCP
MCP server to provide Jira Tickets information to AI coding agents like Cursor

Linear MCP Server
A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.